K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

A B C E D Lấy D thuộc AC sao cho góc AED= góc B(AED< góc AEC)

Do góc BAE = góc DAE (AE là p/g góc A) ; góc AED=góc B (theo cách vẽ)

Do đó \(\Delta ABE\) đồng dạng \(\Delta AED\) (g.g)\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AE}{AD}\)

\(\Rightarrow AE^2=AB.AD< AB.AC\)

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

Xét ΔABC vuông tại A có AE là đường cao

nên AE^2=BE*CE

b: Xét tứ giác AEDC có

góc AEC=góc ADC=90 độ

=>AEDC là tứ giác nội tiếp

=>góc EAD=góc BCO

 

13 tháng 12 2021

a: Xét ΔABE và ΔADC có 

\(\widehat{ABE}=\widehat{ADC}\)

\(\widehat{BAE}=\widehat{DAC}\)

Do đó: ΔABE\(\sim\)ΔADC

Suy ra: \(AB\cdot AC=AD\cdot AE\)

4 tháng 2 2020

a, xét tam giác ABE và tam giác FBE có : BE chung

góc ABE = góc FBE do BD là phân giác của góc ABC (gt)

góc AEB = góc FEB = 90 

=> tam giác ABE = tam giác FBE (ch-gn)

=> AB = BF (đn)

=> tam giác ABF cân tại B (đn)

b, xét tam giác ABD và tam giác FBD có : BD chung

góc ABD= góc FBD (Câu a)

AB = FB (Câu a)

=> tam giác ABD = tam giác FBD (c-g-c)

=> góc DFB = góc DAB  (đn)

góc DAB = 90 

=> góc DFB = 90

=> DF _|_ BC 

c, có  tam giác ABD = tam giác FBD  (Câu b)

=> AD = DF (đn)

=> tam giác DFA cân tại D (đn)

=> góc DFA = góc DAF (đn)                            (1)

góc DF _|_ BC 

AH _|_ BC

=> DF // AH (tc)

=> góc DFA = góc FAH (so le trong)   và (1)

=> góc DAF = góc FAH 

có AF nằm giữa AC và AH 

=> AF là phân giác của góc HAC (đn)

d, cm : tam giác CDF = tam giác IDA (cgv-gnk)

=> IA = CF

CM : BC = BI

CM : tam giác  DBI = tam giác DBC 

=> ...

4 tháng 2 2020

a, Ta có: Góc AEB = 90o (AE vuông góc với BD tại E) , Góc BEF = 90o (AE vuông góc với BD tại E)

Xét tam giác ABE và tam giác FBE, có

BE chung

Góc ABE = FBE (BD là phân giác của góc ABF)

Góc AEB = BEF (cùng = 90o)

=> Tam giác ABE = FBE (g.c.g)

=> AB = BF (2 cạnh tương ứng)

=> Tam giác ABF cân tại B (Định nghĩa tam giác cân)

    

29 tháng 4 2023

có AB=AC suy ra tam giác ABC cân

mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC

xét 2 tam giác vuông ABE và ACE co\hept{��=������ˋ���ℎ�ℎ���\hept{AB=ACAElaˋcanhchung

suy ra 2 tam giác bằng nhau

a: Xet ΔABE và ΔACE có

AB=AC
góc BAE=góc CAE
AE chung

=>ΔABE=ΔACE

b: ΔABC cân tại A

mà AE là phân giác

nên AE là trung tuyến

c: ΔABC cân tại A

mà AE là trung tuyến

nên AE vuông góc BC

d: AG=2/3*AE=6cm