các bạn giúp mình C và D ạ, mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 16 = 2⁴
42 = 2.3.7
ƯCLN(16; 42) = 2
ƯC(16; 42) = Ư(2) = {1; 2}
b) 16 = 2⁴
42 = 2.3.7
86 = 2.43
ƯCLN(16; 42; 86) = 2
ƯC(16; 42; 86) = Ư(2) = {1; 2}
c) 25 = 5²
75 = 3.5²
ƯCLN(25; 75) = 5² = 25
ƯC(25; 75) = Ư(25) = {1; 5; 25}
d) 25 = 5²
55 = 5.11
75 = 3.5²
ƯCLN(25; 55; 75) = 5
ƯC(25; 55; 75) = Ư(5) = {1; 5}
ĐKXĐ : \(x\ne\pm2\)
Ta có : \(A=\left(\dfrac{\left(x+1\right)\left(x+2\right)+x\left(x-2\right)+2x^2+3}{x^2-4}\right):\left(\dfrac{x+2-x+3}{x+2}\right)\)
\(=\left(\dfrac{4x^2+x+5}{x^2-4}\right):\left(\dfrac{5}{x+2}\right)=\dfrac{\left(4x^2+x+5\right)\left(x+2\right)}{5\left(x+2\right)\left(x-2\right)}=\dfrac{4x^2+x+5}{5x-10}\)
\(=\dfrac{4x+9}{5}+\dfrac{23}{5x-10}\)
- Để A nhận giá trị nguyên :
\(5\left(x-2\right)\inƯ_{\left(23\right)}=\left\{1;-1;23;-23\right\}\)
\(\Rightarrow x\in\left\{\dfrac{11}{5};\dfrac{9}{5};\dfrac{33}{5};-\dfrac{13}{5}\right\}\)
=> Không tồn tại x nguyên để A nguyên .
a: góc ABC=90 độ-góc ACB
góc KHC=90 độ-góc ACB
=>góc ABC=góc KHC
b: Xét ΔBAH vuông tại A và ΔBKH vuông tại K có
BH chung
góc ABH=góc KBH
=>ΔBAH=ΔBKH
=>BA=BK và HA=HK
=>BH là trung trực của AK
c: Xét ΔIBC có
BD,CA là đường cao
BD căt CAt tại H
=>H là trực tâm
=>I,H,K thẳng hàng
d: ΔADK đều
=>góc ADH=30 độ
=>góc AIK=30 độ
=>góc ABC=60 độ
12.
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)
\(\Rightarrow M=\sqrt{2}\)
13.
Pt có nghiệm khi:
\(5^2+m^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow2m\le24\)
\(\Rightarrow m\le12\)
14.
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=k2\pi\)
15.
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)
Đáp án A
16.
\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)
Có \(1008+1008=2016\) nghiệm
a) Ta có: \(A=\dfrac{7}{12}+\dfrac{5}{12}:6-\dfrac{11}{36}\)
\(=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}\)
\(=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}\)
\(=\dfrac{25}{36}\)
b) Ta có: \(B=\left(\dfrac{4}{5}+\dfrac{1}{2}\right):\left(\dfrac{3}{13}-\dfrac{8}{13}\right)\)
\(=\left(\dfrac{8}{10}+\dfrac{5}{10}\right):\dfrac{-5}{13}\)
\(=\dfrac{13}{10}\cdot\dfrac{13}{-5}\)
\(=-\dfrac{169}{50}\)
c) Ta có: \(C=\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right):\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right)\)
\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{115}{132}\cdot\dfrac{132}{103}=\dfrac{115}{103}\)
B2"
`a)3/4+1/2-1/4`
`=3/4-1/4+1/2`
`=1/2+1/2=1`
`b)(-2)/3*5/7+(-2)/3*2/7+5/3`
`=(-2)/3*(5/7+2/7)+5/3`
`=-2/3+5/3=1`
`c)(-5)/9+5/9:(1 2/3-2 1/6)`
`=(-5)/9+5/9:(5/3-13/6)`
`=(-5)/9+5/9:(-3)/6`
`=(-5)/9+5/9*(-2)`
`=5/9*(-1-2)`
`=5/9*(-3)=-5/3`
b3:
`a)x*3/6=2/3`
`=>x*1/2=2/3`
`=>x=4/3`
`b)x/150=5/6*(-7)/25`
`=>x/150=(-7)/(6*5)=-7/30`
`=>x/150=(-35)/150`
`=>x=-35`
`c)1/2x+3/5x=3`
`=>11/10x=3`
`=>x=3*10/11=30/11`
\(C=4x^2+9y^2+4x-9y+3\)
\(=\left(4x^2+4x+1\right)+\left(9y^2-9y+\frac{9}{4}\right)+3-1-\frac{9}{4}\)
\(=\left(2x+1\right)^2+\left(3y-\frac{3}{2}\right)^2-\frac{1}{4}\)
Mà \(\left(2x+1\right)^2+\left(3y-\frac{3}{2}\right)^2\ge0\Rightarrow\left(2x+1\right)^2+\left(3y-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy \(C_{Min}=-\frac{1}{4}\)khi và chỉ khi \(\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-\frac{3}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\3y-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
\(D=2x^2+y^2+2xy-10x+2y+2023\)
\(=\left(x^2+2xy+y^2\right)+x^2-10x+2y+2023\)
\(=\left(x+y\right)^2+2x+2y+\left(x^2-12x+36\right)+2023-36\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(x-6\right)^2+1987-1\)
\(=\left(x+y+1\right)^2+\left(x-6\right)^2+1986\)
Mà \(\left(x+y+1\right)^2+\left(x-6\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-6\right)^2+1986\ge1986\)
Vậy \(D_{Min}=1986\)khi và chỉ khi \(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-6\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-6=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=-7\end{cases}}}\)