CMR: 3(a^3+b^3+c^3)>= (a+b+c)(a^2+b^2+c^2);
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge0\)
\(\Leftrightarrow\frac{c^3-a^3}{a^2}+\frac{a^3-b^3}{b^2}+\frac{b^3-c^3}{c^2}\ge0\)
\(\Leftrightarrow\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
Dễ thấy: mẫu dương nên:
\(\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2-a^2b^2c^2\left(a+b+c\right)\ge0\Leftrightarrow\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2+c^5b^2+a^5c^2+b^5a^2-2a^2b^2c^2\left(a+b+c\right)\ge0\)
Chưa nghĩ ra tiếp :v
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\)
\(=\left(\frac{a^3}{b^2}+a\right)+\left(\frac{b^3}{c^2}+b\right)+\left(\frac{c^3}{a^2}+c\right)-a-b-c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\sqrt{\frac{a^3.a}{b^2}}+2.\sqrt{\frac{b^3.b}{c^2}}+2.\sqrt{\frac{c^3.c}{a^2}}-a-b-c\)\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)
Áp dụng BĐT Cauchy schwarz ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)\(\ge2\left[\frac{\left(a+b+c\right)^2}{a+b+c}\right]-a-b-c=2\left(a+b+c\right)-a-b-c=a+b+c\)
( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)



Ta co: a3b2=(a2b2)a , a2b3=(a2b2)b => a3b2>a2b3( vi a>b) (1)
b3c2=(b2c2)b , b2c3=(b2c2)c => b3c2>b2c3( vi b>c) (2)
c3a2=(a2c2)c , a3c2=(a2c2)a => c3a2<a3c2 ( vi c<a) (3)
Vi b+c>a ( bdt trong tam giac)
=> dpcm
Bai nay phai xet trong tam giac thi moi dung
\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge a^3+ab^2+ac^2+ba^2+b^3+bc^2+ca^2+cb^2+c^3\)
\(\Leftrightarrow2a^3+2b^3+2c^3\ge ab^2+ac^2+ba^2+bc^2+ca^2+cb^2\)
Lại có:\(a^2-ab+b^2\ge ab\)(dễ dàng cm đc khi chuyển vế)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
TT\(\Rightarrow b^3+c^3\ge bc\left(b+c\right);a^3+c^3\ge ac\left(a+c\right)\)
Cộng vế theo vế =>đpcm