K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
⇒⇒11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 ⇒11...1 (n chữ số 1) - n chia hết cho 3 ⇒ A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm).

Chúc bn hc tốt!

8 tháng 4 2018

Mình cũng có cách này nữa mặc dù dài nhưng vẫn tốt :

Chọn n=1 ⇒⇒ 10+18-1=27 chia hết cho 27 (luôn đúng)
Giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10k+1+18(k+1)-1 chia hết cho 27.
Ta có 10k+1+18(k+1)-1= 10 x 10k+18k+18-1
= (10k +18k-1)+9 x 10k +18
= (10k+18k-1)+9(10k+2)
Ta có: (10^k+18k-1) chia hết cho 27

⇒⇒ 10k+1+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10k+2) chia hết cho 27.

Chứng minh 9(10k+2) chia hết cho 27.
Chọn k=1 ⇒⇒ 9(10+2)=108 chia hết cho 27(luôn đúng)
Giả sử k=m(với m thuộc N*) ta luôn có 9(10m+2) chia hết cho 27.
Ta cần chứng minh với mọi k= m+1 ta có 9(10m+1+2) chia hết cho 27.
Thật vậy ta có: 9(10m+1+2)= 9( 10 x10m+2)= 9( 10m+9 x 10m+2)
= 9(10m+2) +81 x 10m
Ta có 9(10m+2) chia hết cho 27 và 81x10m chia hết cho 27

⇒⇒ 9(10m+1+2) chia hết cho 27
⇒⇒9(10k+2) chia hết cho 27
⇒⇒10k+1+18(k+1)-1 chia hết cho 27
⇒⇒10n+18n-1 chia hết cho 27 ⇒⇒ ( đpcm ).

1 tháng 10 2016

10^n tan cung la 1 ...

18n - 1 chia het cho 9, tan cung la -1 ...

=> 1 + (-1) = 0 chia het cho 27

Hieu thi tu lam

Khong hieu thi ke :D

15 tháng 11 2021

-.-

 

9 tháng 6 2016

A = 10^n + 18n - 1

A = 10^n - 1 - 9n + 27n

A = 99...9 - 9n + 27n

    ( n chữ số 9)

A = 9.(11...1 - n) + 27n

         ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)

=> A = 9.3k + 27n

A = 27k + 27n = 27.(k+n) chia hết cho 27

Chứng tỏ A chia hết cho 27 với n là số tự nhiên

9 tháng 6 2016

A = 10^n + 18n - 1

A = 10^n - 1 - 9n + 27n

A = 99...9 - 9n + 27n

       (n chữ số 9)

A = 9.(11...1 - n) + 27n

        ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 nên 11...1 - n chia hết cho 3 => 11...1 - n = 3k( k thuộc N)

=> A = 9.3k + 27n

A = 27k + 27n = 27.(k+n) chia hết cho 27

Chứng tỏ A chia hết cho 27 với n là số tự nhiên 

9 tháng 6 2016

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

9 tháng 6 2016

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

14 tháng 2 2016

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

13 tháng 2 2016

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

20 tháng 2 2016

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

22 tháng 2 2016

Nhọ Nồi Dù sao thì cx camon's -_-

Với n=1 thì 1^3+2*1=3 chia hết cho 3

Với n>1 thì Giả sử n^3+2n chia hết cho 3

Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3

\(A=\left(n+1\right)^3+2\left(n+1\right)\)

\(=n^3+3n^2+3n+1+2n+2\)

=n^3+3n^2+5n+3

=n^3+2n+3n^2+3n+3n+3

=n^3+2n+3(n^2+n+n+1) chia hết cho 3

=>ĐPCM

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65