Biết \(x\in Q\) và \(0< x< 1\). Chứng minh \(x^n< x\) với \(x\in N,x\ge2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KM
2
27 tháng 3 2020
Xét \(x^n-x=x\left(x^{n-1}-1\right)\)
Vì \(0< x< 1\)
\(\Rightarrow x^{n-1}-1< 0;x>0\)
\(\Rightarrow x^n-x< 0\)
\(\Rightarrow x^n< x\)
TV
2
27 tháng 3 2020
Xét \(x^n-x=x\left(x^{n-1}-1\right)\)
Vì \(0< x< 1\)
\(\Rightarrow x^{n-1}-1< 0;x>0\)
\(\Rightarrow x^n-x< 0\)
\(\Rightarrow x^n< x\)
HN
0
HN
0
CT
1
15 tháng 6 2018
\(m>n\Rightarrow m=n+p\left(p>0\right)\)
\(\Rightarrow x^m=x^n\cdot x^p\)mà \(x< 1\Rightarrow x^m=x^n\cdot x^p< x^n\cdot1^p=x^n\cdot1=x^n\Rightarrow x^m< x^n\)(đpcm)
\(x.x......x< x.1...1\) (n thừa số x)
\(\Rightarrow x^n< x\)