Giúp em bài min này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\dfrac{2}{-1-\left(x-4\sqrt{x}+4\right)}=\dfrac{2}{-1-\left(\sqrt{x}-2\right)^2}\ge\dfrac{2}{-1}=-2\)
\(B_{min}=-2\) khi \(x=4\)
\(D=\dfrac{-3}{x+8\sqrt{x}+20}\ge-\dfrac{3}{20}\)
\(D_{min}=-\dfrac{3}{20}\) khi \(x=0\)
\(A=\dfrac{2}{4\sqrt{x}-x-5}=\dfrac{2}{-\left(x-4\sqrt{x}+4+1\right)}=\dfrac{2}{-\left(\sqrt{x}-2\right)^2-1}\)
\(-\left(\sqrt{x}-2\right)^2-1\le-1\\ \Leftrightarrow\dfrac{2}{-\left(\sqrt{x}-2\right)^2-1}\ge-2\)
Dấu \("="\Leftrightarrow x=4\)
\(B=\dfrac{-3}{x+8\sqrt{x}+20}=\dfrac{-3}{\left(\sqrt{x}+4\right)^2+4}\)
\(\left(\sqrt{x}+4\right)^2+4\ge4\\ \Leftrightarrow\dfrac{3}{\left(\sqrt{x}+4\right)^2+4}\le\dfrac{3}{4}\\ \Leftrightarrow\dfrac{-3}{\left(\sqrt{x}+4\right)^2+4}\ge-\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow\sqrt{x}+4=0\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2ab+6bc+2ac=7abc\Rightarrow\dfrac{6}{a}+\dfrac{2}{b}+\dfrac{2}{c}=7\)
Đặt \(\left(\dfrac{2}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow3x+2y+2z=7\)
\(C=\dfrac{4}{\dfrac{2}{a}+\dfrac{1}{b}}+\dfrac{9}{\dfrac{4}{a}+\dfrac{1}{c}}+\dfrac{4}{\dfrac{1}{b}+\dfrac{1}{c}}=\dfrac{4}{x+y}+\dfrac{9}{2x+z}+\dfrac{4}{y+z}\)
\(C\ge\dfrac{\left(2+3+2\right)^2}{x+y+2x+z+y+z}=\dfrac{49}{7}=7\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(2;1;1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(x=\sqrt{\dfrac{a}{bc}}\) ; \(y=\sqrt{\dfrac{b}{ca}}\) ; \(z=\sqrt{\dfrac{c}{ab}}\)
\(\Rightarrow a=\dfrac{1}{yz}\) ; \(b=\dfrac{1}{zx}\) ; \(c=\dfrac{1}{xy}\)
\(\Rightarrow xy+yz+zx=1\)
Khi đó, tồn tại một tam giác ABC sao cho:
\(x=tan\dfrac{A}{2}\) ; \(y=tan\dfrac{B}{2}\) ; \(z=tan\dfrac{C}{2}\)
Thay vào bài toán:
\(A=\dfrac{x^2}{1+x^2}+\sqrt{3}\left(\dfrac{y^2}{1+y^2}+\dfrac{z^2}{1+z^2}\right)\)
\(=\dfrac{tan^2\dfrac{A}{2}}{1+tan^2\dfrac{A}{2}}+\sqrt{3}\left(\dfrac{tan^2\dfrac{B}{2}}{1+tan^2\dfrac{B}{2}}+\dfrac{tan^2\dfrac{C}{2}}{1+tan^2\dfrac{C}{2}}\right)\)
\(=sin^2\dfrac{A}{2}+\sqrt{3}\left(sin^2\dfrac{B}{2}+sin^2\dfrac{C}{2}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}cosA+\dfrac{\sqrt{3}}{2}\left(2-cosB-cosC\right)\)
\(=\dfrac{1+2\sqrt{3}}{2}-\dfrac{1}{2}\left(cosA+\sqrt{3}cosB+\sqrt{3}cosC\right)\)
Xét \(B=cosA+\sqrt{3}\left(cosB+cosC\right)=cosA+2\sqrt{3}cos\dfrac{B+C}{2}cos\dfrac{B-C}{2}\)
\(\le cosA+2\sqrt{3}cos\dfrac{B+C}{2}=-2sin^2\dfrac{A}{2}+2\sqrt{3}sin\dfrac{A}{2}+1\)
Xét hàm \(f\left(t\right)=-2t^2+2\sqrt{3}sint+1\) với \(t\in\left(0;1\right)\)
\(f'\left(t\right)=-4t+2\sqrt{3}=0\Rightarrow t=\dfrac{\sqrt{3}}{2}\)
\(f\left(0\right)=1\) ; \(f\left(\dfrac{\sqrt{3}}{2}\right)=\dfrac{5}{2}\) ; \(f\left(1\right)=2\sqrt{3}-1\)
\(\Rightarrow B_{max}=\dfrac{5}{2}\)
\(\Rightarrow A\ge\dfrac{1+2\sqrt{3}}{2}-\dfrac{5}{4}=\dfrac{4\sqrt{3}-3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lại có do \(a;b;c\ge0\) nên:
\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)
\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)
Tương tự và cộng lại:
\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\dfrac{-1}{\left(x-6\sqrt{x}+9\right)+1}=\dfrac{-1}{\left(\sqrt{x}-3\right)^2+1}\ge\dfrac{-1}{1}=-1\)
\(C_{min}=-1\) khi \(x=9\)
\(E=\dfrac{2}{-4-\left(x-2\sqrt{x}+1\right)}=\dfrac{2}{-4-\left(\sqrt{x}-1\right)^2}\ge\dfrac{2}{-4}=-\dfrac{1}{2}\)
\(E_{min}=-\dfrac{1}{2}\) khi \(x=1\)