Cho tam giác nhọn ABC. Kẻ AH vuông góc với BC .Biết HB <HC.
CMR : \(\widehat{AHB}=\widehat{HAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)
\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\)
b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)
\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)
ta có BAHˆ=AHCˆ=AHBˆ=90BAH^=AHC^=AHB^=90
BAHˆ=ACBˆBAH^=ACB^ ( cùng phụ HACˆHAC^)
HACˆ=ABCˆHAC^=ABC^( cùng phụ BAHˆBAH^)
Giải:
Có: HB < HC
Mà HB là hình chiếu của AB lên BC
HC là hình chiếu của AC lên BC
=> AB < AC ( mối quan hệ đường xiên và hình chiếu )
=> ^C < ^B => ^C - ^B < 0 (1)
Vì \(\Delta\)ABH vuông tại B => ^B + ^HAB = 90 độ
\(\Delta\)ACH vuông tại C => ^C + ^HAC = 90 độ
=> ^HAB + ^B = ^C + ^HAC
=> ^HAB - ^HAC = ^C - ^B < 0 ( theo (1))
=> ^HAB < ^HAC.
A B C H 20 cm 12 cm 5 cm
Áp dụng định lý Pi ta go vào tam giác AHB ,có:
\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)
Áp dụng định lý Pi ta go vào tam giác AHC ,có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
Chu vi tam giác ABC là:
\(13+20+5+16=54\left(cm\right)\)
A c B H
+Vì HC>HB nên đáy tam giác AHC> đáy tam giác AHB
Dựa vào định lý Pi-ta-go,ta có:
\(AH^2+CH^2=AC^2\); \(AH^2+HB^2=AB^2\)
Mà AC>AB nên \(AC^2>AB^2\)
Vậy AC>AB
áp dụng định lí Py-ta-go cho tam giác ABH vuông tại H ta có: AB2=AH2+BH2
áp dụng định lí Py-ta-go cho tam giác ACH vuông tại h ta có: AC2=AH2+CH2
mà CH>BH nên CH2>BH2
=>AH2+CH2>AH2+BH2=> AC2>AB2 => AC>AB => dpcm