Cho 2 đơn thức :
\(A=\left(-2xy^3\right)^2\)
\(B=\left(3x^3y\right)^2\)
Tìm x,y biết A+B=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
Câu 1:
\(\dfrac{A}{B}=\dfrac{4x^{n+1}y^2}{3x^3y^{n-1}}=\dfrac{4}{3}x^{n-2}y^{2-n+1}=\dfrac{4}{3}x^{n-2}y^{3-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}n-2>=0\\3-n>=0\end{matrix}\right.\Leftrightarrow2\le n\le3\)
Bài 2:
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x+y\right)\left(x-y\right)+3\left(x+y\right)^2}{x+y}\)
\(=x^2-xy+y^2-2\left(x-y\right)+3\left(x+y\right)\)
\(=x^2-xy+y^2-2x+2y+3x+3y\)
\(=x^2-xy+y^2+x+5y\)
1.a, VT= \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\)\(\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2=VP.\left(đpcm\right)\)
b, VP=\(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
\(=x^3+3x^2y+3xy^2+y^3\)\(=\left(x+y\right)^3=VT\left(đpcm\right)\)
2. VT=\(\left(a+b\right)^3-\left(a-b\right)^3\)\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(2b\left(b^2+3a^2\right)\)\(=VP\left(đpcm\right)\).
a) (x2 + y2)2 - (2xy)2
= [(x2 + y2) - 2xy].[(x2 + y2) + 2xy]
= [x2 + y2 - 2xy].[(x2 + y2 + 2xy]
= (x - y)2 . (x + y)2
\(A+B=0\Leftrightarrow\left(-2xy^3\right)^2+\left(3x^3y\right)^2=0\Leftrightarrow4x^2y^6+9x^6y^2=0\Leftrightarrow x^2y^2\left(4y^4+9x^4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\y=0\\\left(4y^4+9x^4\right)=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)