Chứng minh rằng abcd -(a+b+c+d) chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: a + b + c + d chia hết cho 9
=> a chia hết cho 9
b chia hết cho 9
c chia hết cho 9
d chia hết cho 9
Mặt khác : abcd = a * 1000 + b*100 + c* 10 + d
mà a* 1000 chia hết cho 9
b * 100 chia hết cho 9
c * 10 chia hết cho 9
d chia hết cho 9
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ab+ba chia hết cho 11
Vì tổng các số chẵn -tổng các số lẻ:(b+a)-(a+b)=0 chia hết cho 11
=>Tổng ab+ba chia hết cho 11
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
abcd = a.1000 + b.100 + c.10 + d -( a.1 + b . 1 + c.1 + d.1)
= a . 999 + b.99 + c . 9 Chia hết cho 9 ( vì 999 , 99 , 9 chia hết cho 9 )
Vây ... chia hết cho 9
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
abcd - (a + b + c + d) = (1000a + 100b + 10c + d) - (a + b + c + d) = 999a + 99b + 9c = 9.(111a + 11b + c) chia hết cho 9