Cho tam giác ABC ,M là trung điểm của BC
Chứng minh :\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự kẻ hình nhá
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
Xét △ACM và △ABM có
góc BMD=góc AMC
MC=BM
AM=MD
Nên △ACM=△ABM(c.g.c)
=>AC=BD
Xét △ABD có
AB+BD>AD( theo BĐT tam giác)
Mà AC=BD
=>AB+AC>AD
Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD
=>AM<\(\dfrac{AB+AC}{2}\)(1)
Xét △ABM, ta có
AM>AB-BM (*)
Xét △ACM có
AM>AC-CM(**)
Từ (*) và (**), ta có
2.AM>AB+AC-BM+CM (mà BM+CM=BC)
=>2AM>AB+AC-BC
Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)
Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)
câu trả lời của mình bị báo cáo rồi ;-;
* còn gì nữa đâu mà khóc với sầu*
A B C E M 2 1
a, Xét \(\Delta AMB\)và \(\Delta EMC\)có :
\(MB=MC\)( M là trung điểm BC )
\(\widehat{M_1}=\widehat{M}_2\)( 2 góc đối đỉnh )
\(AM=ME\left(GT\right)\)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\)
\(\Rightarrow AB=EC\)( 2 cạnh tương ứng )
b, Xét \(\Delta ACE\)có :
\(AC-CE< AE< AC+BC\)( BĐT trong tam giác )
Mà \(AB=CE\left(cmt\right)\)
\(\Rightarrow AC-AB< AE< AC+AB\)
\(\Leftrightarrow\frac{AC-AB}{2}< \frac{AE}{2}< \frac{AC+AB}{2}\)
a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM
A B C M D
Vẽ điểm D sao cho M là trung điểm của AD
\(\Delta AMB=\Delta DMC\left(c.g.c\right)\) nên \(AB=CD\)
Xét \(\Delta ACD:AD< AC+CD\) nên \(AD< AC+AB\)
Do \(AD=2AM\) nên \(2AM< AC+AB\)
Suy ra \(AM< \dfrac{AB+AC}{2}\)
- CM : AM < (AB+BC):2
Tren tia AM lay D / M la trung diem AD
cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD
ta co : AD<AC+CD ( bdt trong tam giac ACD)
ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)
nen 2AM< AC+AB
--> AM < ( AC+AB):2
- cm ( AB+AC-BC):2 < AM
ta co : AB < AM+BM ( bdt trong tam giac ABM )
AC< AM+MC ( bdt trong tam giac AMC )
==> AB+AC < AM+BM+AM+MC
----> A
chứng minh gì
hỏi thì phải hỏi cho hết chứ
HẾT R