K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

chứng minh gì

hỏi thì phải hỏi cho hết chứ

12 tháng 3 2018

HẾT R

8 tháng 4 2021

Bạn tự kẻ hình nhá

Trên tia đối của tia MA lấy điểm D sao cho AM=MD

Xét △ACM và △ABM có

góc BMD=góc AMC

MC=BM

AM=MD

Nên △ACM=△ABM(c.g.c)

=>AC=BD

Xét △ABD có

AB+BD>AD( theo BĐT tam giác)

Mà AC=BD

=>AB+AC>AD

Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD

=>AM<\(\dfrac{AB+AC}{2}\)(1)

Xét △ABM, ta có

AM>AB-BM (*)

Xét △ACM có

AM>AC-CM(**)

Từ (*) và (**), ta có

2.AM>AB+AC-BM+CM (mà BM+CM=BC)

=>2AM>AB+AC-BC

Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)

Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)

8 tháng 4 2021

câu trả lời của mình bị báo cáo rồi ;-;

* còn gì nữa đâu mà khóc với sầu*

A B C E M 2 1

a, Xét \(\Delta AMB\)và \(\Delta EMC\)có :

\(MB=MC\)( M là trung điểm BC )

\(\widehat{M_1}=\widehat{M}_2\)( 2 góc đối đỉnh )

\(AM=ME\left(GT\right)\)

\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\)

\(\Rightarrow AB=EC\)( 2 cạnh tương ứng )

b, Xét \(\Delta ACE\)có :

\(AC-CE< AE< AC+BC\)( BĐT trong tam giác )

Mà \(AB=CE\left(cmt\right)\)

\(\Rightarrow AC-AB< AE< AC+AB\)

\(\Leftrightarrow\frac{AC-AB}{2}< \frac{AE}{2}< \frac{AC+AB}{2}\)

a:

Lấy D sao cho M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

(AB+AC)=AB+BD>AD

=>AB+AC>2AM

=>(AB+AC)/2>AM

19 tháng 7 2017

A B C M D

Vẽ điểm D sao cho M là trung điểm của AD

\(\Delta AMB=\Delta DMC\left(c.g.c\right)\) nên \(AB=CD\)

Xét \(\Delta ACD:AD< AC+CD\) nên \(AD< AC+AB\)

Do \(AD=2AM\) nên \(2AM< AC+AB\)

Suy ra \(AM< \dfrac{AB+AC}{2}\)

22 tháng 3 2018

Giải thích chi tiết ra nhé

12 tháng 8 2015

- CM : AM < (AB+BC):2

Tren tia AM lay D / M la trung diem AD

cm tam giac ABM = tam giac MCD ( c-g-c)--> AB= CD

ta co : AD<AC+CD ( bdt trong tam giac ACD)

ma AD=2AM ( M la trung diem AD) va AB= CD ( cmt)

nen 2AM< AC+AB

--> AM < ( AC+AB):2

- cm ( AB+AC-BC):2 < AM

ta co : AB < AM+BM ( bdt trong tam giac ABM )

            AC< AM+MC ( bdt trong tam giac AMC )

==> AB+AC < AM+BM+AM+MC

----> A