cho 2 da thuc:f(x)=x^2+3mx+m^2 va g(x)=x^2+(2m-1)x+m^2. tim m de f(1)=g(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(1\right)=1^2+3m\cdot1+1^2=1+3m+1=2+3m\)
\(g\left(1\right)=1^2+\left(2m-1\right)\cdot1+m^2=1+\left(2m-1\right)+m^2=1+2m-1+m^2=2m+m^2\)
Để \(f\left(1\right)=g\left(1\right)\Rightarrow2+3m=2m+m^2\)
\(\Rightarrow2+m=m^2\)
\(\Rightarrow2=m^2-m\)
\(\Rightarrow2=m\left(m-1\right)\)
Ta có 2=-1 x (-2)= 1 x 2
P/S: Tự lập bảng giá trị
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
f(x) = x^3 - x^2 + x - 1
f(1) = 0
g(1) = m+x
mà g(x) = f(x) (với mọi x)
=> m+x=0
m+1=0
=>m=-1
theo đề bài, ta có:
\(F\left(1\right)=Q\left(-1\right)\\ \Leftrightarrow1+2m+m^2=1-3m+2m^2\\ \Leftrightarrow m^2-5m=0\\ \Leftrightarrow m\left(m-5\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=5\end{matrix}\right.\)
vậy F(1)=Q(-1) khi x=0 hoặc 5
a: f(-1)=g(2)
nên \(-1-m-1+2m+m^2-1=12m+13m+m^2-3\)
\(\Leftrightarrow25m-3=m-3\)
=>m=0
b: \(s\left(x\right)=f\left(x\right)+g\left(x\right)=x^3+x^2\left(3m-m-1\right)+x\left(-2m+\dfrac{13}{2}m\right)+m^2-1+m^2-3\)
\(=x^3+\left(2m-1\right)x^2+\dfrac{9}{2}mx+2m^2-4\)
Vì m=1 nên \(s\left(x\right)=x^3+x^2+\dfrac{9}{2}x-2\)
Khi x=1 thì \(s=1+1+\dfrac{9}{2}-2=\dfrac{9}{2}\)
Khi x=-1 thì \(s=-1+1-\dfrac{9}{2}-2=-\dfrac{13}{2}\)
Lời giải:
\(f(x)=x^2+3mx+m^2\Rightarrow f(1)=1+3m+m^2\)
\(g(x)=x^2+(2m-1)x+m^2\Rightarrow g(1)=1+(2m-1)+m^2=m^2+2m\)
Để \(f(1)=g(1)\Leftrightarrow 1+3m+m^2=m^2+2m\)
\(\Leftrightarrow 1+m=0\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(\left\{{}\begin{matrix}f\left(x\right)=x^2+3mx+m^2\\g\left(x\right)=x^2+\left(2m-1\right)x+m^2\end{matrix}\right.\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left[3m-\left(2m-1\right)\right]x=\left(m+1\right)x\)
\(f\left(1\right)=g\left(1\right)\Rightarrow f\left(1\right)-g\left(1\right)=0\Rightarrow h\left(1\right)=0\)
\(\Rightarrow\left(m+1\right).1=0\Rightarrow m=-1\)