K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

BĐT cần chứng minh tương đương với

\(\left(a+b\right)\left(1+ab\right)\ge4ab\)

Thật vậy

Áp dụng bđt AM-GM ta có

\(a+b\ge2\sqrt{ab}\)

\(1+ab\ge2\sqrt{ab}\)

Nhân từng vế 2 bđt trên => đpcm

Dấu "=" xảy ra khi a=b=c>0

29 tháng 5 2017

ko biết mới học lớp 6 thui à

29 tháng 5 2017

\(S=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{4ab}+4ab\right)+\frac{1}{4ab}\)

\(\ge\frac{4}{a^2+b^2+2ab}+2.\sqrt{\frac{4ab}{4ab}}+\frac{1}{\left(a+b\right)^2}=4+2+1=7\)

6 tháng 3 2017

Áp dụng BĐT AM-GM ta có:

\(a+b\ge2\sqrt{ab}\)

\(ab+1\ge2\sqrt{ab\cdot1}=2\sqrt{ab}\)

Nhân theo vế 2 BĐT ta có:

\(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}\cdot2\sqrt{ab}=4\sqrt{a^2b^2}=4ab\)

Đẳng thức xảy ra khi \(a=b\)

6 tháng 3 2017

\(\left(a+b\right)\left(ab+1\right)\ge4ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(ab+1\right)}{ab}\ge4\)

\(\Leftrightarrow\left(\dfrac{a+b}{ab}\right)\left(ab+1\right)\ge4\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge4\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\\ab+1\ge2\sqrt{ab}\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge2\sqrt{\dfrac{1}{ab}}.2\sqrt{ab}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(ab+1\right)\ge4\) ( đpcm )

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

Áp dụng bất đẳng thức Cô-si với hai số  \(a,b\)  không âm, ta có:

\(a+b\ge2\sqrt{ab}\)  \(\left(1\right)\)

\(ab+1\ge2\sqrt{ab}\)  \(\left(2\right)\)

Nhân  \(\left(1\right)\)  với  \(\left(2\right)\)  vế theo vế, ta được:

\(\left(a+b\right)\left(ab+1\right)\ge4ab\)  \(\left(đpcm\right)\)

Dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)  \(a=b\)  và  \(ab=1\)  \(\Leftrightarrow\)  \(a=b=1\)  (do  \(a>0\)  và  \(b>0\), tức \(a,b\) dương)

Chú ý (không ghi): bài này có nhiều cách, bạn có thể tìm cách mới!

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

29 tháng 9 2019

Ta bien doi BDT can chung minh

\(a+b\ge\frac{4ab}{1+ab}\)

\(\Leftrightarrow a+a^2b+b+ab^2\ge4ab\)

\(\Leftrightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)

Ta co:

\(a+\frac{1}{a}\ge2\)

\(b+\frac{1}{b}\ge2\)

\(\Rightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)

Dau '=' xay ra khi \(a=b=1\)