K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sung đề tìm n là số nguyên để 7/n+9 là số nguyên

Để 7/n+9 là số nguyên thì \(n+9\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{-8;-10;-2;-16\right\}\)

24 tháng 11 2021

\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)

31 tháng 5 2021

Để tích 2 PS là số nguyên thì 19⋮n-1 và n⋮9

⇒n-1∈Ư(19),9∈B(n)

⇒Ư(19)={\(\pm\)1;\(\pm\)19}

⇒n-1=1                                             ⇒n-1=19

⇒n-1=-1                                            ⇒n-1=-19

⇒n∈{2;20;0;-18} nhưng 9∈B(n)

⇒n∈{0;-18}

 

Giải:

Ta gọi tích hai số là A

Ta có:

\(A=\dfrac{19}{n-1}.\dfrac{n}{9}=\dfrac{19.n}{\left(n-1\right).9}\) (với n ≠ 1)

Vì \(ƯCLN\left(19;9\right)=1\) \(;ƯCLN\left(n;n-1\right)=1\) 

\(\Rightarrow A\in Z\)

\(\Rightarrow n\in B\left(9\right)\) và \(\left(n-1\right)\inƯ\left(19\right)\) 

Ta có bảng giá trị:

n-11-119-19
n2020-18

\(\Rightarrow n\in\left\{-18;0\right\}\) (t/m)

Vậy \(n\in\left\{-18;0\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$

$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$

$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$

$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

2 tháng 7 2018

Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :

\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)\(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)

\(P_{MIN}=196."="\)\(x=y=z=\dfrac{1}{3}\)

2 tháng 7 2018

bunhia đc k bn

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

7 tháng 1 2023

\(\dfrac{7}{9}+\dfrac{1}{3} < x < \dfrac{43}{8}+\dfrac{1}{10}\)

\(\dfrac{10}{9} < x < \dfrac{219}{40}\)

  Mà \(x \in N\)

  \(=>x=\){`2;3;4;5`}

7 tháng 1 2023

\(\dfrac{7}{9}+\dfrac{1}{3}< x< \dfrac{43}{8}+\dfrac{1}{10}\)

\(\dfrac{10}{9}< x< \dfrac{219}{40}\)

Mà \(x\inℕ\)

\(\Rightarrow\dfrac{10}{9}< 2\le x\le5< \dfrac{219}{40}\)

\(\Rightarrow2\le x\le5\)

\(\Rightarrow x\in\left\{2;3;4;5\right\}\)

Vậy: \(x\in\left\{2;3;4;5\right\}\)

5 tháng 11 2021

Ko có gt thỏa mãn