K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)

\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)

Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)

Theo bài ra ta cs 

\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)

\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)

21 tháng 9 2023

\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)

Áp dụng Bđt Bunhiacopxki :

\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)

\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)

Đặt \(t=x+y+z+8\)

\(\left(1\right)\Leftrightarrow t^2=56t-784\)

\(\Leftrightarrow t^2-56t+784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z+8=28\)

\(\Leftrightarrow x+y+z-6=14\)

\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài

7 tháng 3 2020

Ta có: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}.\)

\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)\(x+y+z=145.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(60;45;40\right).\)

Chúc bạn học tốt!

7 tháng 3 2020

Bạn có thể giúp mình thêm câu nữa đc ko

\(\dfrac{x}{18}=\dfrac{4}{3}\Rightarrow x=\dfrac{18.4}{3}=24\\ \dfrac{20}{y}=\dfrac{4}{3}\Rightarrow y=\dfrac{20.3}{4}=15\\ \dfrac{z}{21}=\dfrac{4}{3}\Rightarrow z=\dfrac{21.4}{3}=28\)

Ta có:

\(\dfrac{x}{18}\) = \(\dfrac{4}{3}\)

⇒ x = \(\dfrac{4}{3}\) . 18

⇒ x = 24

\(\dfrac{20}{y}\) = \(\dfrac{4}{3}\)

⇒ y = 20 : \(\dfrac{4}{3}\)

⇒ y = 15

\(\dfrac{z}{21}\) = \(\dfrac{4}{3}\)

⇒ z = \(\dfrac{4}{3}\) . 21

⇒ z = 28

⇒ x + y + z = 24 + 15 + 28 = 67

Vậy x + y + z = 67

 

 

21 tháng 7 2017

Ta có :

\(x:y:z=4:6:8=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=> x= 2k

=> y = 3k

=> z = 4k

Thay vào biểu thức:

2x + y - 3z = 5

=> 4k + 3k - 12k = 5

=> -5k = 5 

=> k = -1

=> x = -2 ; y = -3 ; z = -4

25 tháng 7 2017

thank bạn

15 tháng 4 2022

a) \(4x-2=x\)

\(4x-x=2\)

\(3x=2\)

\(x=\dfrac{2}{3}\)

b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)

Vậy hàm số cần tìm là \(y=3x\)

c) Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)

\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)

14 tháng 7 2021

Đề sai rồi bạn nhé

14 tháng 7 2021

2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai  ucche

20 tháng 7 2019

Ta có: x(x+y+z)=(-5) (1)

y(x+y+z)=9 (2)

z(x+y+z)=5 (3)

\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)

+ Với x+y+z=3 thì:

Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)

Từ (2) và (4) \(\Rightarrow\) y=3

Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)

+ Với x+y+z=-3

Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)

Từ (2) và (5) \(\Rightarrow y=-3\)

Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)

Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)