K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

3 tháng 11 2017

https://www.toaniq.com/tinh-gia-tri-bieu-thuc-a-13-23-33-1003/

bạn vào táp này khác có lời giải

18 tháng 10 2015

Ta có :

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

⇒A⋮50.101⇒A⋮B

18 tháng 10 2015

Ta có :

B=101.50

A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

A⋮50.101⇒AB

em sin lỗi em mới lớp 5

12 tháng 1 2016

ta có 1^3 +2^3+3^3+...+100^3=(1+2+3+4+...+100)^2 \(\Rightarrow\) A chia hết cho B (sách toán 6 tập 1 có đấy)

Tick mk nhé