Tìm x biết: \(\sqrt{x-4\sqrt{x-4}}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
Tìm x biết: \(\sqrt{4-x^2}=\sqrt{x+2}\)
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\)
Giúp mình với!Mình đang cần gấp
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))
\(\Leftrightarrow4-x^2=x+2\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
_______
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\))
\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)
\(\Leftrightarrow9x^2-4=12x-8\)
\(\Leftrightarrow9x^2-12x+4=0\)
\(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(x\ge3\)
\(\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}+1\right)^2}+\sqrt{\left(\sqrt{x-3}+3\right)^2}=4\)
\(\Leftrightarrow\sqrt{x-3}+1+\sqrt{x-3}+3=4\)
\(\Leftrightarrow2\sqrt{x-3}=0\Leftrightarrow x=3\)(TMĐK)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,9\right)\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(\sqrt{x}=\sqrt{6+4\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)
\(\Rightarrow Q=\dfrac{2+\sqrt{2}+1}{2+\sqrt{2}-3}=\dfrac{3+\sqrt{2}}{\sqrt{2}-1}=\dfrac{\left(3+\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=4\sqrt{2}+5\)
c) \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để \(Q\in Z\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\Rightarrow x\in\left\{16;25;49;4;1\right\}\)
a) Ta có: \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(\sqrt{x-4\sqrt{x-4}}=2\left(ĐK:x\ge4\right)\)
\(\Leftrightarrow\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}-2\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}-2\right|=2\)(1)
Với \(4\le x< 8\)(1) <=> \(2-\sqrt{x-4}=2\Leftrightarrow\sqrt{x-4}=0\Leftrightarrow x=4\left(tm\right)\)
Với \(x\ge8\)(1) <=> \(\sqrt{x-4}-2=2\Leftrightarrow\sqrt{x-4}=4\Leftrightarrow x-4=16\Leftrightarrow x=20\left(tm\right)\)
Vậy S = { 4 ; 20 }