K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

\(Q=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(Q=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+\left(x-1\right)\)

\(Q=\left(x-1\right)\left(x^3-2x^2+2x+1\right)_{\ge}0\)

15 tháng 5 2016

\(Q=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(Q=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)+\left(x-1\right)\)

\(Q=\left(x-1\right)\left(x^3-2x^2+2x+1\right)\ge0\)

10 tháng 6 2017

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

10 tháng 6 2017

a,-x2+x+1>0 với mọi x mới đúng

13 tháng 7 2017

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

13 tháng 7 2017

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

1 tháng 3 2018

có : \(x\ge0\)

\(\Rightarrow x^3+4x\ge0\)

\(\Rightarrow\)\(x^3+4x+1\ge1\)

có  \(3x^2\ge0\) ( vì x >=0)

suy ra

\(x^3+4x+1\ge3x^2\)

     

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1

6 tháng 12 2017

1.

x(x+1)(x2+x+3) = (x2+x)(x2+x+3)

đặt x2+x = t

=> t(t+3)=4

=>t;t+3 thuộc Ư(4)

=> t;t+3 thuộc -1;1-2;2-4;4

tự xét lần lượt các TH nha bạn

4 tháng 12 2017
  1. Tập xác định của hàm số

  2. 2

    Giao điểm với trục hoành (OX)

  3. 3

    Giao điểm với trục tung (OY)

  4. 4

    Giới hạn hàm số tại vô cực

  5. 5

    Khảo sát tính chẵn lẻ của hàm số

  6. 6

    Giá trị của đạo hàm

  7. 7

    Đạo hàm bằng 0 tại

  8. 8

    Hàm số tăng trên

  9. 9

    Hàm số giảm trên

  10. 10

    Giá trị nhỏ nhất của hàm số

  11. 11

    Giá trị lớn nhất của hàm số

5 tháng 12 2017

Bạn dưới đang giải theo cách làm THPT phải không? Cho mình hỏi \(\infty\)là denta à?