bài 5: tìm số x không âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) Ta có /x+2/\(\ge\)0 với \(\forall\)x
nên /x+2/+50\(\ge\)0 với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\)/x+2/=0
\(\Leftrightarrow\)x=\(-2\)
Vậy GTNN của A là 50 khi x=\(-2\)
b)Ta có /x-100/\(\ge\)0 với mọi x
/y+200/\(\ge\)0 với mọi x
nên /x-100/+/y+200/-1\(\ge\)-1 với mọi x
Dấu"=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=100\\y=-200\end{matrix}\right.\)
Vậy GTNN của B=-1 khi x=100;y=-200
c)Ta có \(-\)/x+5/\(\le\)0 với mọi x
nên 2015\(-\)/x+5/\(\le\)2015 với mọi x
Dấu"=" xảy ra\(\Leftrightarrow\)x=\(-5\)
Vậy GTLN của bt trên là 2015 khi x=\(-5\)
a)\(15-\left(x-7\right)=-21\Rightarrow x-7=15-\left(-21\right)=36\)
\(\Rightarrow x=36+7=43\)
b)\(\left(17-x\right)-12=6\Rightarrow17-x=6+12=18\)
\(\Rightarrow x=17-18=-1\)
c)Số nguyên âm lớn nhất là \(-1\)
\(\Rightarrow5-x=-1\Rightarrow x=5-\left(-1\right)=6\)
d)Số nguyên âm nhỏ nhất có 2 chữ số là \(-99\)
\(\Rightarrow x+5=-99\Rightarrow x=-99-5=-104\)
a) \(\sqrt{x}=4\Rightarrow x=16\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
c) \(\sqrt{x}=0\Rightarrow x=0\)
d) \(2\sqrt{x}=16\Rightarrow\sqrt{x}=8\Rightarrow x=64\)
e) \(\sqrt{4x}< 2\Rightarrow2\sqrt{x}< 2\Rightarrow\sqrt{x}< 1\Rightarrow x< 1\Rightarrow0\le x< 1\)
g) \(\sqrt{x+1}>3\Rightarrow x+1>9\Rightarrow x>8\)
h) \(2\sqrt{x-2}=8\Rightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Rightarrow x=18\)
k) Vì \(\sqrt{x}\ge0\Rightarrow\) pt vô nghiệm
Lời giải:
a.
$\sqrt{x}=4$
$\Leftrightarrow x=4^2=16$
b.
$\sqrt{x}=\sqrt{7}$
$\Leftrightarrow x=7$
c.
$\sqrt{x}=0$
$\Leftrightarrow x=0^2=0$
d.
$2\sqrt{x}=16$
$\sqrt{x}=16:2=8$
$x=8^2=64$
e.
$\sqrt{4x}<2$
$4x< 2^2=4$
$x< 1$
Vậy $0\leq x< 1$
g.
$\sqrt{x+1}>3$
$x+1>3^2=9$
$x>8$
h.
$2\sqrt{x-2}=8$
$\sqrt{x-2}=4$
$x-2=4^2=16$
$x=18$
k.
$\sqrt{x}=-3< 0$ vô lý do căn bậc 2 số học của 1 số thì luôn không âm.
Vậy pt vô nghiệm.
\(\frac{5}{4-x}\left(đkxđ:x\ne4\right)\)
Phân số không âm khi cả tử và mẫu hoặc cùng dương hoặc cùng âm
5 là số dương
=> Để \(\frac{5}{4-x}\)không âm => 4 - x dương
=> 4 - x > 0
=> -x > -4
=> x < 4
Vậy với x < 4 thì \(\frac{5}{4-x}\)không âm