Cho tam giác ABC . Cạnh huyền BC=289 và đường cao AH=120. Tính 2 cạnh góc vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Hình vẽ chỉ mang tính chất minh họa
Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}\)
\(\Rightarrow AB=\sqrt{100^2-60^2}\)
\(\Rightarrow AB=80\left(cm\right)\)
Chu vi tam giác ABC= AB+AC+BC=80+60+100=240(cm)
Xét tam giác ABC vuông tại A, đương cao AH có:
+ \(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{80.60}{100}\)
\(\Rightarrow AH=48\left(cm\right)\)
+ \(BH=\frac{AB^2}{BC}\)
\(\Rightarrow BH=\frac{80^2}{100}=64\left(cm\right)\)
\(CH=BC-BH\)
\(\Rightarrow CH=100-64=36\left(cm\right)\)
Chu vi tam giác ABH= AB+BH+AH=80+64+48=192(cm)
Chu vi tam giác ACH=AC+CH+AH=60+36+48=144(cm)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
A B C K N 5 12
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Độ dài chiều cao AH là:
(4,5+6):2 = 5,25 (cm)
Đáp số: 5,25 cm
nhớ k cho mình nha. Yêu nhiều!
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
Hình:
A B C H 120 289 M
~~~~
Kẻ đường trung tuyến AM
Ta có: AM = \(\dfrac{1}{2}BC=HM=\dfrac{289}{2}=144,5\)
Áp dụng đl py-ta-go vào tg AHM vuông tại H có:
\(HM=\sqrt{AM^2-AH^2}=\sqrt{144,5^2-120^2}=80,5\)
=> BH = BM - HM = 144,5 - 80,5 = 64
Áp dụng py-tago vào tg ABH vuông tại H có:
\(AB^2=BH^2+AH^2=18496\Rightarrow AB=136\)
=> \(AC=\sqrt{289^2-136^2}=255\)
Vậy AB = 136 ; AC = 255