K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)

Vì \(x\)\(x+1\)và \(x+2\)là 3 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)

mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)

hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )

3 tháng 5 2020

Mình cảm ơn ạ !!!

2 tháng 9 2021

x^2 = -y^2 mod p,tức (-1/p) =1 tức p=1 mod 4

2 tháng 9 2021

Hoặc cả 2 x,y cùng chia hết cho p

26 tháng 3 2015

phải có điều kiện x thuộc Z hoặc thuộc N chứ

20 tháng 2 2020

P(x)=x^3-a^2.x+2016.b

Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x

có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)

+nếu x chia hết cho 3=>P(x) chia hết cho 3

+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3

+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3

=>ĐPCM

21 tháng 2 2020

mik bt làm r

12 tháng 7 2023

\(\left(x-y\right)^2+2xy⋮4\)

\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)

\(\Rightarrow x^2+y^2⋮4\)

\(\Rightarrow x^2⋮4;y^2⋮4\)

mà \(4⋮2\)

\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)

\(\Rightarrow dpcm\)

12 tháng 7 2023

 Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

14 tháng 5 2018

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

14 tháng 5 2018

Ta có x là một số nguyên tố lớn hơn 3 ( gt )

Nên x không thể chia hết cho 3 và x^2 chia 3 dư 1 

\(\Rightarrow x^2-1⋮3\)

x là nguyên tố lớn hơn 3 nên x là số lẻ suy ra x^2 chia 8 dư 1 

\(\Rightarrow x^2-1⋮8\)

\(\Rightarrow x^2-1⋮24\left(đpcm\right)\)