K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

.....đề sai hay sao v.....=))

a: CH=16^2/25=10,24cm

BC=25+10,24=35,24cm

AB=căn 16^2+25^2=căn 881(cm)

b: AH=căn 12^2-6^2=6căn 3cm

CH=AH^2/HB=108/6=18cm

BC=6+18=24cm

c: BC=căn 5^2+25^2=5 căn 26cm

BH=5^2/5căn 26=5/căn 26(cm)

CH=5căn 26-5/căn 26=24,51(cm)

d: AB=căn 16^2-14^2=2căn15(cm)

e: AB=căn 2*8=4cm

AC=căn 6*8=4căn 3(cm)

NV
2 tháng 8 2021

a. Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)

b.

Áp dụng hệ thức lượng:

\(AB^2=IB.BC\Rightarrow IB=\dfrac{AB^2}{BC}=7,2\left(cm\right)\)

\(IC=BC-IB=12,8\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)

b)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=IB\cdot BC\\AC^2=IC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AI là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BI\cdot BC\\AC^2=CI\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=\dfrac{12^2}{20}=\dfrac{144}{20}=7.2\left(cm\right)\\IC=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\end{matrix}\right.\)

12 tháng 2 2016

Xét tg ABC vuông tại A

BC^2=AB^2+AC^2(đl Pytago)

AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144

theo t/c dãy tỉ số=nhau ta có:

AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)

=>AB^2=25.4=100=10^2=>AB=10(cm)

AC^2=144.4=576=24^2=>AC=24(cm)

 Vậy...

10 tháng 2 2018

Xét tg ABC vuông tại A
BC^2=AB^2+AC^2(đl Pytago)
AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số=nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
 Vậy...

:D

14 tháng 2 2022

Áp dụng định lý pitago ta có

\(AC^2=AB^2+BC^2\)

\(AB^2=AC^2-BC^2\)

\(AB=\sqrt{12^2-8^2}=\sqrt{80}=4\sqrt{5}cm\)

14 tháng 2 2022

xét tam giác ABC vuông tại B ta có :
AB^2 + BC^2 = AC^2 ( Theo định lí Py-ta-go )
thay BC = 8   ta được :
        AC=12 
AB^2 = AC^2-BC^2
=> AB^2 = 144 - 64
 =>AB^2 =80
=>AB=\(\sqrt{80}cm=4\sqrt{5}cm\)

4 tháng 3 2017

Tam giác ABC vuông tại A  => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)

\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :

\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)

\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)

\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)

Vậy AB = 10 (cm); AC = 24 (cm)

a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có

AB=AE

AC chung

=>ΔABC=ΔAEC

b: Xet ΔCEB có

CA,BH là trung tuyến
CA cắt BH tại M

=>M là trọng tâm

=>CM=2/3*12=8cm

c: Xét ΔCBE có

A là trung điểm của BE

AK//CE
=>K la trung điểm của BC

=>E,M,K thẳng hàng

8 tháng 5 2022

a) Có: △ABC cân tại A => AB=AC

         và AI là tia p/g của góc ABC => góc BAI= góc CAI

Xét △ABI và △ ACI có

            AI chung

       góc BAI= góc CAI

       AB=AC

=>△ABI = △ ACI (c.g.c)

b)Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường trung tuyến của  △ABC

có :D là trung điểm của AC 

=> BD là đường trung tuyến của  △ ABC

trong  △ABC có 

    AI là đường trung tuyến thứ nhất

   BD là đường trung tuyến thứ hai

Mà 2 đường này cắt nhau tại M

=> M là trọng tâm của △ABC

BI=CI=BC/2=3(cm)

Có : △ABC cân tại A ; AI là tia p/g của góc ABC

=> AI cũng là đường cao

=> AI⊥BC

=> △ABI vuông tại I 

=> AI^2+ BI^2= AB^2

=> AI^2+9=25

  AI^2 = 16

=> AI = 4( cm)

13 tháng 12 2021

ok

 

 

Có cái nịt