CMR : 3a + 2b \(⋮\) 17 \(\Leftrightarrow10a+b⋮17\) (a;b \(\in\) Z )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Do phải chứng minh \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)nên ta phải chứng minh hai chiều nhé)
Ta có : \(10a+b=17\Leftrightarrow2\left(10a+b\right)⋮17\)
Ta lại có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(2\left(10a+b\right)⋮17\)
\(\Rightarrow3a+2b⋮17\)
Ta có : \(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a⋮17\)mà \(3a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
Do \(\left(2,17\right)=1\Rightarrow10a+b⋮17\)
Vậy \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)
Ta có :
\(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Rightarrow27a+18b⋮17\)
\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)(1)
Ta có :
\(10a+b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
\(\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
\(\Rightarrow3a+2b⋮17\)(2)
Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)
_Chúc bạn học tốt_
sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !
đặt 3a+2b=x ; 10a+b=y
Ta có:x chia hết cho17; cần chứng minhy chia hết cho 17
Xét :10x-3y=10.(3a+2b)-3(10a+b)=30a+20b-30a+3b=17b chia hết cho 17(vì 17 chia hết cho 17)
Nhận tháy:x chia hết cho 17 => 10x chia hết cho 17=>3y chia hết cho 17 mà(3;17)=1 =>y chia hết cho 17 =>10a+b chia hết cho17
VẬY:10a+b chia hết cho 17=>ĐPCM
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
Vì \(17⋮17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
Vì \(3a+2b⋮17\Rightarrow2.\left(10a+b\right)⋮17\)
Mà (2,10) = 1\(\Rightarrow10a+b⋮17\)
⇒ 3a+2b ⋮ 17 ⇌ 10a + b⋮ 17 ( đpcm )
Lời giải:
Đây là bài chứng minh 2 chiều (\(\Leftrightarrow )\). Vì vậy, làm như bạn Thủy thì chỉ chứng minh được một chiều thuận thôi.
Ta có:
\(3a+2b\vdots 17\)
\(\Leftrightarrow 9(3a+2b)\vdots 17\) (do \(9,17\) nguyên tố cùng nhau)
\(\Leftrightarrow 27a+18b\vdots 17\)
\(\Leftrightarrow 27a+18b-17(a+b)\vdots 17\)
\(\Leftrightarrow 10a+b\vdots 17\)
Bài toán hai chiều được chứng minh.