CM \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm

Lời giải:
Đặt \(P=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\)
Ta có:
\(\frac{P}{2}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{4}}+...+\frac{1}{2\sqrt{n}}\)
\(< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}(1)\)
Mà:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{3}+\sqrt{4}}+....+\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n-1}+\sqrt{n}}\)
\(=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{n}-\sqrt{n-1})\)
\(=\sqrt{n}-1(2)\)
Từ \((1);(2)\Rightarrow \frac{P}{2}< \sqrt{n}-1\Rightarrow P< 2\sqrt{n}-2\)
-----------------------
Tương tự:
\(\frac{P}{2}>\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}+\frac{1}{2\sqrt{n}}=\sqrt{n}-\sqrt{2}+\frac{1}{2\sqrt{n}}\)
\(\Rightarrow P> 2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}\)
Mà \(2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}> 2\sqrt{n}-3\Rightarrow P>2\sqrt{n}-3\)
Ta có đpcm.

Bạn ghi sai đề à? Số đầu tiên phải là \(\dfrac{1}{\sqrt{1}}\) chứ sao là \(\dfrac{1}{\sqrt{n}}\), mặc dù đề như vậy làm vẫn được nhưng chắc chẳng ai cho dãy quy luật kiểu đó
\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=2\left(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{2\sqrt{2}}+...+\dfrac{1}{2\sqrt{n}}\right)\)
\(\Rightarrow A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(\Rightarrow A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)
Ta chứng minh \(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\Leftrightarrow2\sqrt{n+1}>\sqrt{n}+2\)
\(\Leftrightarrow4\left(n+1\right)>n+4+4\sqrt{n}\Leftrightarrow3n>4\sqrt{n}\Leftrightarrow\sqrt{n}>\dfrac{4}{3}\)
\(\Leftrightarrow n>\dfrac{16}{9}\) (đúng với mọi \(n\ge2\) )
Vậy \(A>\sqrt{n}\)
- Ta chứng minh tiếp \(A< 2\sqrt{n}\)
\(A=1+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}=1+\dfrac{2}{2\sqrt{2}}+...+\dfrac{2}{2\sqrt{n}}\)
\(\Rightarrow A< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n-1}+\sqrt{n}}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{n}-1\right)=2\sqrt{n}-1< 2\sqrt{n}\) (đpcm)
Vậy: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
Nguyễn Việt Lâmtran nguyen bao quanBạch Tuyên NghiNguyễn Thanh Hằng help me

\(\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)

b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)
rồi bạn tính nói chung mẫu bằng -1
tính cái trên tử kết quả là 4
c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)
từ đó suy ra B > 2A vậy B>8

a: \(=\dfrac{2+\sqrt{3}}{2}:\left(1+\sqrt{\dfrac{2+\sqrt{3}}{2}}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\sqrt{\dfrac{2-\sqrt{3}}{2}}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}:\left(1+\sqrt{\dfrac{4+2\sqrt{3}}{4}}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\sqrt{\dfrac{4-2\sqrt{3}}{4}}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}:\left(1+\dfrac{\sqrt{3}+1}{2}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\dfrac{\sqrt{3}-1}{2}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}\cdot\dfrac{2}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2}\cdot\dfrac{2}{2-\sqrt{3}+1}\)
\(=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{9-3}\)
\(=\dfrac{6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3}{6}\)
\(=\dfrac{6}{6}=1\)
Giải:
Ta có:
\(\sqrt{1}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{2}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{3}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{n}}\)
...
\(\sqrt{n}=\sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+...+\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{n}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\)
Vậy ...