K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

\(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x-x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy ..

17 tháng 1 2018

x.(x-2)-3=0

x.(x-2)=0+3

x.(x-2)=3

\(\Rightarrow\left[{}\begin{matrix}x=3\\x-2=3\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

Vậy x=5 hơạc x=3

28 tháng 12 2023

Ta đặt \(N=x^2+2x=x\left(x+2\right)\). Do \(x< x+2\) nên để N là số nguyên tố thì \(\left\{{}\begin{matrix}x=1\\x+2\in P\end{matrix}\right.\) (luôn đúng) (kí hiệu P là tập hợp các số nguyên tố). 

 Vậy \(x=1\) thỏa ycbt.

28 tháng 12 2023

Cảm ơn bạn 

22 tháng 8 2016

vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3

6 tháng 10 2017

(2x+1)+(3-x)=0

=>2x+1=-3+x

=>2x+1-x=-3

=>x+1=-3

=>x=-3-1=-4

Vậy x=-4

6 tháng 10 2017

a)(2x+1)+(3-x)=0

 2x+1+3-x=0

x+4=0

x=-4

vậy x=-4

DT
19 tháng 12 2023

a) \(A=-x\left(x-2\right)+2x-8=-x^2+2x+2x-8\\ =-x^2+4x-8\\ =-\left(x^2-4x+4\right)+4-8\\ =-\left(x-2\right)^2-4\)

Vì : \(\left(x-2\right)^2\ge0\forall x\)

\(=>-\left(x-2\right)^2\le0\)

\(=>A\le-4\)

Dấu = xảy ra khi : \(\left(x-2\right)^2=0=>x=2\)

Vậy GTLN bt A là : -4 tại x = 2

DT
19 tháng 12 2023

b) \(B=-x^2+6x-11\\ =-\left(x^2-6x+9\right)+9-11\\ =-\left(x-3\right)^2-2\le-2\forall x\)

Dấu = xảy ra khi : \(\left(x-3\right)^2=0=>x=3\)

Vậy GTLN của B là : -2 tại x = 3

ĐKXĐ: x>=0; x<>1

PT =>\(\dfrac{\left(\sqrt{x}+3\right)\left(-2x+6\right)}{\left(\sqrt{x}-1\right)^2}=0\)

=>6-2x=0

=>x=3

14 tháng 7 2023

tại sao lại là 6-2x ạ

28 tháng 11 2016

|2x+3|=|x-3|

(2x+3)2=(x-3)2

4x2+12x+9=x2-6x+9

3x+ 18x = 0

x=0 hoặc x=-6

20 tháng 3 2020

a) (x2-1)(x2-4)<0

=> x2-1 và x2-4 trái dấu nhau

Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4 

=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)

=> Không có giá trị củ x thỏa mãn đề bài