K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Đặt x + t = 2 thì:

\(\left(t-1\right)^4+\left(t+1\right)^4=82\Rightarrow2t^4+12t^2+2=82\Rightarrow t^4+6t^2+1=41\Rightarrow t^4+6t^2+9=49\Rightarrow\left(t^2+3\right)^2=49\Rightarrow t^2=4\Rightarrow t\in\left\{2;-2\right\}\Rightarrow x\in\left\{0;-4\right\}\)

NV
28 tháng 6 2019

Đặt \(x-1=a\) phương trình trở thành:

\(\left(a+2\right)^4+\left(a-2\right)^4=82\)

\(\Leftrightarrow a^4+8a^3+24a^2+32a+16+a^4-8a^3+24a^2-32a+16=82\)

\(\Leftrightarrow2a^4+48a^2+32=82\)

\(\Leftrightarrow a^4+24a^2-25=0\Rightarrow\left[{}\begin{matrix}a^2=1\\a^2=-25\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

24 tháng 2 2018

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

Đặt a = x + 5

Ta có:

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

\(\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4\)

\(\Leftrightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)

\(\Leftrightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)

\(\Leftrightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+a\right)+4a^2=82\) \(\Leftrightarrow\left(a^2+1\right)^2+4a^2=41\)

\(\Leftrightarrow a^4+6a^2+1=41\)

\(\Leftrightarrow a^4+6a^2-40a=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=-10\left(loại\right)\\a^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)

24 tháng 2 2018

khúc \(a^4+6a^2-40\) bạn làm hơi nhanh, mà thôi kệ. Thanks!!!

NV
20 tháng 2 2020

a/ Đặt \(x-3=t\)

\(\left(t+1\right)^4+\left(t-1\right)^4-82=0\)

\(\Leftrightarrow2t^4+12t^2-80=0\)

\(\Leftrightarrow t^4+6t^2-40=0\Rightarrow\left[{}\begin{matrix}t^2=4\\t^2=-10\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b/ \(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)-43=0\)

Đặt \(x^2-4x=t\)

\(t^2+2\left(t+4\right)-43=0\)

\(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4x-5=0\\x^2-4x+7=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

26 tháng 8 2016

ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)

Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\) 

\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\) 

\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)

Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)

\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)

Thay (1) và (2) vào, ta có:

\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)

Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)

Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)

\(\Leftrightarrow4x=0\)

\(\Rightarrow x=0\)

Vậy:.........


 

26 tháng 8 2016

Lớp mấy đây, lớp 8 mà đây á

13 tháng 2 2020

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

13 tháng 2 2020

Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)

5 tháng 4 2021

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

5 tháng 4 2021

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

8 tháng 6 2020

\(x^4-3x^3+4x^2-3x+1=0\)

Chia cả hai vế với \(x^2\)ta có

\(x^2-3x+4-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(3x+\frac{3}{x}\right)+4=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3.\left(x+\frac{1}{x}\right)+4=0\)

Đặt \(t=x+\frac{1}{x}\left(t>0\right)\)    \(\Rightarrow t^2-2=x^2+\frac{1}{x^2}\)

\(t^2-2-3t+4=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow t^2-t-2t+2=0\)

\(\Leftrightarrow t.\left(t-1\right)-2.\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right).\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=1\left(TM\right)\\t=2\left(TM\right)\end{cases}}\)

TH1 \(t=1\)\(\Rightarrow x+\frac{1}{x}=1\)

\(\Leftrightarrow\frac{x^2+1}{x}=1\)\(\Leftrightarrow x^2+1=x\)

                                  \(\Leftrightarrow x^2-x+1=0\)

                                  \(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)

                                 \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)   (Vô nghiệm)

TH2 \(t=2\)  \(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow\frac{x^2+1}{x}=2\)   \(\Leftrightarrow x^2+1=2x\)

                                     \(\Leftrightarrow x^2-2x+1=0\)

                                     \(\Leftrightarrow\left(x-1\right)^2=0\)

                                     \(\Leftrightarrow x-1=0\)

                                    \(\Leftrightarrow x=1\)

Vậy \(x=1\)

                               

20 tháng 6 2017

a) 2x-(3x-5x)=4(x+3) 

2x - 3x + 5x = 4x +12

4x = 4x + 12

0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)

b) 5(x-3)-4=2(x-1)+7

5x-15 - 4 = 2x-2 + 7

5x-19 = 2x+5

5x-2x = 5+19

3x = 24

x= 8

c) 4(x+3)=-7X+17

4x +12 = -7x + 17

4x+7x = 17-12

11x = 5

x = 5/11

20 tháng 6 2017

  1)      2x - (3x -5x) = 4(x+3)

\(\Leftrightarrow\)2x +2x = 4x +12

\(\Leftrightarrow\)4x = 4x +12

\(\Leftrightarrow\)0x = 12

Vậy phương trình đã cho vô nghiệm
2)        5(x-3) - 4 = 2(x-1) +7

\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7

\(\Leftrightarrow\)    5x - 1   = 2x +5

\(\Leftrightarrow\)    5x - 2x = 5 +1

\(\Leftrightarrow\)        3x   =   6

\(\Leftrightarrow\)         x    =   2

Vậy tập nghiệm của phương trình là S= {2}

 3)      4(x + 3) = -7x + 17

\(\Leftrightarrow\)4x + 12 = -7x +17

\(\Leftrightarrow\)4x + 7x = 17 - 12

\(\Leftrightarrow\)   11x    =     5

\(\Leftrightarrow\)     x     =    \(\frac{5}{11}\)

Vậy tập nghiệm của phương trình là S={   \(\frac{5}{11}\)}

5 tháng 5 2018

a) x + 3 = 0

\(\Leftrightarrow x=-3\)

Vậy phương trình có tập nghiệm  \(S=\left\{-3\right\}\)

b) 2x - 1 = 0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm  \(S=\left\{\frac{1}{2}\right\}\)

c) x - 1 = 5x - 3

\(\Leftrightarrow x-5x=-3+1\)

\(\Leftrightarrow-4x=-2\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy phương trình có tập nghiệm  \(S=\left\{\frac{1}{2}\right\}\)

5 tháng 5 2018

Vậy còn câu d..e..f giải sao ad