\(C =\dfrac{4}{5}+\dfrac{20}{|3x+5|+|4y+5|+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a:=>3x=15
=>x=5
b: =>x+3=0,96
=>x=-2,04
c: =>x^2=36
=>x=6 hoặc x=-6
`a, 3/4=(3x)/20`
`3x*4=3*20`
`3x*4=60`
`3x=60 \div 4`
`3x=15`
`x=15 \div 3`
`x=5`
`b, (1,2)/(x+3)=5/4`
`1,2*4=(x+3)*5`
`4,8=(x+3)*5`
`x+3= 4,8 \div 5`
`x+3=0,96`
`x=0,96-3`
`x=-2,04`
`c, (x^2)/32=9/8`
`x^2*8=32*9`
`x^2*8=288`
`x^2=288 \div 8`
`x^2=36`
`x^2=(+-6)^2`
`-> \text {x= 6 hoặc -6}`
![](https://rs.olm.vn/images/avt/0.png?1311)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{3}{5}+\dfrac{11}{20}=\dfrac{12}{20}+\dfrac{11}{20}=\dfrac{23}{20}\)
b) \(\dfrac{5}{8}-\dfrac{4}{9}=\dfrac{45}{72}-\dfrac{32}{72}=\dfrac{13}{72}\)
c) \(\dfrac{9}{16}\times\dfrac{4}{3}=\dfrac{3}{4}\)
d) \(\dfrac{4}{7}:\dfrac{8}{11}=\dfrac{4}{7}\times\dfrac{11}{8}=\dfrac{11}{14}\)
e) \(\dfrac{3}{5}+\dfrac{4}{5}:\dfrac{2}{5}=\dfrac{3}{5}+\dfrac{4}{5}\times\dfrac{5}{2}=\dfrac{3}{5}+2=\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. 7/8 x 2/5 =7/20
b.9/4-5/6=17/12
c.4/7x2/5=8/35
d.3/5+2=13/5
e. 4-3/5=17/5
g.3x4/9=4/3
h.9/5:2=9/10
a) \(\dfrac{14}{40}=\dfrac{7}{20}\)
b) \(\dfrac{27}{12}-\dfrac{10}{12}=\dfrac{17}{12}\)
c) \(\dfrac{8}{35}\)
d) \(\dfrac{3}{5}+\dfrac{10}{5}=\dfrac{13}{5}\)
e) \(\dfrac{20}{5}-\dfrac{3}{5}=\dfrac{17}{5}\)
g) \(\dfrac{12}{9}=\dfrac{4}{3}\)
h) \(\dfrac{9}{5}x\dfrac{1}{2}=\dfrac{9}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
=>\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{-3x-4y+5z+3-12-25}{-6-16+30}=2\)
=>x-1=4; y+3=8; z-5=12
=>x=5; y=5; z=17
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
đề là j vậy bạn
tìm GTLN