Dùng t/c cơ bản của phân thức, CMR: \(\dfrac{4x^3y^2}{2xy}=2x^2y\) với \(x,y\ne0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
\(=2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4+\left(-32\right)+\left(-8\right)=\left(-36\right)\)
1/x^3 - 2x^2 - 9x + 18
= x\(^2\)( x - 2 ) - 9 ( x - 2 ) = ( x\(^2\) - 9 ) ( x - 2 )= ( x - 3 ) ( x +3 ) ( x - 2 )
2/3x^2 -5x - 3y^2 + 5y
= 3( x\(^2\) - y\(^2\) ) - 5 ( x - y ) = 3 ( x - y ) ( x + y ) - 5 ( x - y ) = ( x - y ) [ 3( x+ y ) - 5 ]
= ( x - y ) ( 3x + 3y - 5 )
3/49 - x^2 + 2xy - y^2
= 49 - ( x\(^2\) - 2xy + y\(^2\) ) = 49 - ( x - y )\(^2\) = ( 7 - x + y ) ( 7 + x - y )
5/ x^2 - 4x^2y^2 + 2xy
= x ( x - 4xy\(^2\) + 2y )
6/ 3x - 3y - x^2 + 2xy - y^2
= ( 3x - 3y ) - ( x\(^2\) - 2xy + y\(^2\) ) = 3 ( x - y ) - ( x - y )\(^2\) = ( x - y ) ( 3 - x + y )
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
1) \(x^3\left(\dfrac{-5}{4}x^2y\right)\left(\dfrac{2}{5}x^3y^4\right)\)
\(=\dfrac{-1}{2}x^8y^5\)
Vậy: Bậc là 14, phần hệ số là \(\dfrac{-1}{2}\)
2) \(5xyz.4x^3y^2\left(-2x^5y\right)\)
\(=-40x^9y^4z\)
Vậy: Bậc là 15, phần hệ số là \(-40\)
3) \(4x^3y\left(-x^2y^5\right)\left(2xy\right)\)
\(=-8x^6y^7\)
Vậy: Bậc là 14, phần hệ số là \(-8\)
\(A=4x^4+4x^2y^2+3x^2y^2+3y^4+4y^2\)
\(=\left(4x^2+3y^2\right)\left(x^2+y^2\right)+4y^2\)
\(=4\left(4x^2+3y^2\right)+4y^2\)
\(=4\left(4x^2+4y^2\right)=4\cdot4\cdot4=64\)
Ta có:
\(\dfrac{4x^3y^2}{2xy}=\dfrac{4x^3y^2:2xy}{2xy:2xy}=2x^2y\)
Vậy \(\dfrac{4x^3y^2}{2xy}=2x^2y\)