K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

Ta có n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n(n+1)(n+2) chia hết cho 2.
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học tốt nha ! (^_^)

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

4 tháng 1 2016

n(n + 1)(2n + 1) chia hết cho 6

n(n + 1)(2n + 1) chia hết cho 2 và 3

n(n + 1) là tích 2 số tự nhiên liên tiếp 

Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2

n chia hết cho 3 => Tích chia hết cho 3

n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3

n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3

< = > n(n + 1)(2n + 1) chia hết cho 3

UCLN(2,3) = 1

Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6 

=> ĐPCM 

12 tháng 7 2016

Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6

Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.

30 tháng 10 2021

Ta có  vì n\(\in\)N

+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2

+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2

vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N

25 tháng 2 2016

ai giúp mk vs

16 tháng 11 2021

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

14 tháng 6 2017

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)