Giai Phương trình nghiệm nguyên sau: x^3 +3367 = y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có y3y3=(x−2)4(x−2)4-x4x4=-8(x-1)(x2x2-2x+2)
⇒⇒ y chẵn ⇒⇒ đặt y=-2k(k ϵϵ Z).
⇒⇒ -8k3k3=-8(x-1)(x2x2-2x+2) ⇔⇔ k3k3=(x-1)(x2x2-2x+2)
Do ƯCLN(x-1,x2x2-2x+2)=1 nên x-1=a3a3 và x2x2-2x+2=b3b3 (a,b ϵϵ Z)
Ta có (a3)2(a3)2+1=b3b3 ⇒⇒ b>0. Đặt a2a2=c(c ϵϵ N)
ta có c3c3+1=b3b3 mà b,c ϵϵ N nên b>c.
Th1: b-c ⩾⩾ 2 ⇒⇒ b3b3 ⩾⩾ (c+2)3(c+2)3=c3c3+6c2c2+12c+8>c3c3+1
⇒⇒ trường hợp này loại
Th2:b-c=1 ⇒⇒ c3c3+1=(c+1)3(c+1)3 ⇔⇔ 3c2c2+3c=0
⇔⇔ 3c(c+1)=0 ⇒⇒ c=0( vì c ϵϵ N)
⇒⇒ a=0 ⇒⇒ x=1 và y=0
Vậy nghiệm nguyên của phương trình là x=1 và y=0
![](https://rs.olm.vn/images/avt/0.png?1311)
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
→Xét x ≥ 1 thì:
x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)²
và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)²
=> (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)²
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nghiệm với x ≥ 1
→Xét x = 0: tính được y = ± 1 => pt có 2 nº (0; -1) và (0;1)
→Xét x = -1: y⁴ = -1 (vô nº)
→Xét x ≤ -2: để dễ nhìn đặt z = -x => z ≥ 2
pt trở thành: y⁴ = z⁶ - 3z³ + 1
Ta thấy: z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2)
=> z⁶ - 3z³ + 1 < (z³ - 1)²
và (z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8)
=> z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)²
Do đó: (z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)²
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nº với x ≤ -2
Kết luận pt đã cho có 2 nº là (0; -1) và (0;1)
→Xét x ≥ 1 thì: x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)² và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)² => (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)² => y⁴ nằm giữa 2 số chính phương liên tiếp => pt đã cho vô nghiệm với x ≥ 1 →Xét x = 0: tính được y = ± 1 => pt có 2 nº (0; -1) và (0;1) →Xét x = -1: y⁴ = -1 (vô nº) →Xét x ≤ -2: để dễ nhìn đặt z = -x => z ≥ 2 pt trở thành: y⁴ = z⁶ - 3z³ + 1 Ta thấy: z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2) => z⁶ - 3z³ + 1 < (z³ - 1)² và (z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8) => z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)² Do đó: (z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)² => y⁴ nằm giữa 2 số chính phương liên tiếp => pt đã cho vô nº với x ≤ -2 Kết luận pt đã cho có 2 nº là (0; -1) và (0;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có phương trình :
\(x^2y+x^2=x^3-y+2x+7\)
\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)
\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)
\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)
Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)
\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)
\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)
\(\Leftrightarrow x+8⋮x^2+1\)
\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)
\(\Leftrightarrow x^2+1-65⋮x^2+1\)
\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)
\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)
\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\). \(x^2\) là số chính phương với \(x\inℤ\)
\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)
+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )
+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )
+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )
+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )
+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )
Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)