K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

mk làm luôn

a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right).\)

=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)

=\(\frac{\left(3x+3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}\)

=\(\frac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)

=

6 tháng 7 2018

a/ \(A=\frac{\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}}\)

\(A=\frac{\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)-\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}+1-3}{3\sqrt{x}+1}}\)

\(A=\frac{\frac{3x-4\sqrt{x}+1-3\sqrt{x}-1}{\left(3\sqrt{x}\right)^2-1}-\frac{8\sqrt{x}}{9x-1}}{1-1-\frac{3}{3\sqrt{x}+1}}\)

\(A=\frac{\frac{3x-7\sqrt{x}}{9x-1}-\frac{8\sqrt{x}}{9x-1}}{-\frac{3}{3\sqrt{x}+1}}\)

\(A=\frac{3x-7\sqrt{x}-8\sqrt{x}}{9x-1}\left(\frac{-\left(3\sqrt{x}+1\right)}{3}\right)\)

\(A=\frac{3x-15\sqrt{x}}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)

\(A=\frac{3\left(x-3\sqrt{x}\right)}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)

\(A=\frac{\left(x-3\sqrt{x}\right)\left(-3\sqrt{x}-1\right)}{9x-1}\)

\(A=\frac{3x\sqrt{x}+8x+3\sqrt{x}}{9x-1}\)

\(A=\frac{3x\sqrt{x}}{9x-1}+\frac{8x}{9x-1}+\frac{3\sqrt{x}}{9x-1}\)

\(A=\frac{x\sqrt{x}}{x-\frac{1}{3}}+\frac{8x}{9x-1}+\frac{\sqrt{x}}{x-\frac{1}{3}}\)

\(A=\frac{\sqrt{x}\left(x-1\right)}{x-\frac{1}{3}}+\frac{\frac{8}{3}x}{x-\frac{1}{3}}\)

\(A=\frac{\sqrt{x}\left(x-1\right)+\frac{8}{3}x}{x-\frac{1}{3}}\)

7 tháng 7 2018

bạn huy hoàng làm sai rồi

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

b: Để \(A>\dfrac{1}{3}\) thì \(A-\dfrac{1}{3}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)

30 tháng 8 2021

a) \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\left(đk:x\ge0,x\ne0\right)\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\)

b) \(A>\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\)

\(\Leftrightarrow6>\sqrt{x}+3\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\) 

18 tháng 5 2019

\(A-B=\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{1-\sqrt{x}}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\frac{\left(\sqrt{x}+1\right)^2}{x-1}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2x-2\sqrt{x}+x+2\sqrt{x}+1+3\sqrt{x}-1}{x-1}=\frac{3x+3\sqrt{x}}{x-1}=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-1}\)

Để \(M< 4\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-1}< 4\)

Nếu x>=1

\(\Rightarrow3\sqrt{x}\le4\sqrt{x}-4\)

\(\Leftrightarrow4\le\sqrt{x}\)

\(\Leftrightarrow x\le16\)

Nếu x<1

\(\Rightarrow3\sqrt{x}>4\sqrt{x}-4\)

\(\Leftrightarrow4>\sqrt{x}\)

\(\Rightarrow16>x\)

Ko có x thỏa mãn

27 tháng 2 2022

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\left(ĐK:x\ge0;x\ne25\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5}{\sqrt{x}+5}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)

b, Thay x = 9 vào A, ta được:

\(A=\frac{\sqrt{9}-5}{\sqrt{9}+5}=\frac{3-5}{3+5}=\frac{-2}{8}=-\frac{1}{4}\)

c, \(A< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\left(\sqrt{x}-5\right)}{3\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\) 

\(\Rightarrow2\sqrt{x}-20< 0\) (vì \(3\left(\sqrt{x}+5\right)>0\) )

\(\Leftrightarrow2\sqrt{x}< 20\)

\(\Leftrightarrow\sqrt{x}< 10\)

\(\Leftrightarrow x< 100\)

Vậy \(0\le x< 100\)và \(x\ne25\) là giá trị cần tìm.