Cho A = \(\frac{63}{3n+1}\).Tìm n để: a) A rút gọn được;
b) a là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm câu b thôi
b, Để A là số tự nhiên => \(\frac{63}{3n+1}\)
\(\Rightarrow3n+1\inƯ(63)\) \((1)\)
Mà \(n\in N\)=> \(3n+1\in N\) \((2)\)
Từ 1 và 2 => \(3n+1\in\left\{1;7\right\}\)
- Nếu 3n + 1 = 1 => 3n = 0 => n = 0
- Nếu 3n + 1 = 7 => 3n = 6 => n = 2
Vậy : \(\hept{\begin{cases}n=6\\n=2\end{cases}}\)
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
b) A là số tự nhiên.
Để A là số tự nhiên thì 3n + 1 phải thỏa mãn các điều kiện sau:\(\hept{\begin{cases}3n+1\in N\\63⋮3n+1\end{cases}}\).
Điều kiện 1: 3n + 1 \(\in\)N => n \(\in\)N
Điều kiện 2: 63 \(⋮\)3n + 1
=> 3n + 1 \(\in\)Ư (63) = {1 ; 8 ; 16 ; 32 ; 64}
Ta lập bảng:
3n + 1 | 1 | 8 | 16 | 32 | 64 |
3n | 0 | 7 | 15 | 31 | 63 |
n | 0 | / | 5 | / | 21 |
Khi \(3n+1\in B\left(63\right)\) hoặc \(3n+1\inƯ\left(63\right)\)
\(A=\frac{63+1}{3n}\left(n\in N\right)\)
Ta rút gọn được :
+\(3n+1\in B\left(63\right)\)
+\(3n+1\inƯ\left(63\right)\)
Gọi d là ƯC ( 63 , 3n + 1 )
sau đó lập luộn tìm d và xét
toán khó wa
tham khảo ở link này có cô quản lí trả lời nek
https://olm.vn/hoi-dap/detail/62521557302.html