Câu 2:
a, Tính S = 5+52+53+...+52006
b,Tìm x biết:
(x+1)+(x+2)+...+(x+100)=206550
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+5^4+...+5^{2007}-5-5^2-5^3-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) \(S=5+5^2+5^3+...+5^{2006}\)
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(S=5\cdot\left(1+5^3\right)+5^2\cdot\left(1+5^3\right)+...+5^{2003}\cdot\left(1+5^3\right)\)
\(S=\left(1+5^3\right)\cdot\left(5+5^2+...+5^{2003}\right)\)
\(S=126\cdot\left(5+5^2+...+5^{2003}\right)\) ⋮ 126
a) Ta có A = 21 + 22 + 23 + ... + 22022
2A = 22 + 23 + 24 + ... + 22023
2A - A = ( 22 + 23 + 24 + ... + 22023 ) - ( 21 + 22 + 23 + ... + 22022 )
A = 22023 - 2
Lại có B = 5 + 52 + 53 + ... + 52022
5B = 52 + 53 + 54 + ... + 52023
5B - B = ( 52 + 53 + 54 + ... + 52023 ) - ( 5 + 52 + 53 + ... + 52022 )
4B = 52023 - 5
B = \(\dfrac{5^{2023}-5}{4}\)
b) Ta có : A + 2 = 2x
⇒ 22023 - 2 + 2 = 2x
⇒ 22023 = 2x
Vậy x = 2023
Lại có : 4B + 5 = 5x
⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x
⇒ 52023 - 5 + 5 = 5x
⇒ 52023 = 5x
Vậy x = 2023
a, 2 + 4 + 6 +...+ 2x = 210
=> 2(1 + 2 + 3 +...+ x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 210
=> x(x + 1) = 14.15
=> x = 14
b, Ta có: \(B=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)....\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6.....100}\)
\(=1.3.5.....99=B\)
Vậy A = B
\(\Rightarrow=\frac{51\cdot52\cdot53\cdot...\cdot100\cdot\left(1\cdot2\cdot3\cdot...\cdot50\right)\cdot2\cdot2\cdot2\cdot....\cdot2}{51\cdot52\cdot53\cdot...\cdot100}\)
rút gọn còn lại:\(\frac{1\cdot2\cdot3\cdot...\cdot50\left(2\cdot2\cdot2\cdot..\cdot2\right)}{1}\)
\(=1\cdot2\cdot3\cdot....\cdot50\left(2\cdot2\cdot2\cdot2\cdot...\cdot2\right)\)(52 số 2)
ok!
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
a) \(B=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow5B=5^2+5^3+5^4+...+5^{2023}\)
\(\Rightarrow4B=5^{2023}-5\)
b) \(4B+5=5^X\)
Hay \(5^{2023}-5+5=5^X\)
\(5^{2023}=5^x\)
\(\Rightarrow x=2023\)
B = 5 + 52 + 53 +...+ 52022
5.B = 52 + 53 +....+ 52023
5B- B = 52023 - 5
4B = 52023 - 5
b, 4B + 5 = 5\(^x\) ⇒ 52023 - 5 + 5 = 5\(^x\)
5\(^{2023}\) = 5\(x\)
\(x\) = 2023
a, S = 5 + 52 + 53 + .......... + 52006
\(\Rightarrow\)5S = 52 + 53 + 54 + ............ + 52007
\(\Rightarrow\)5S - S = ( 52 + 53 + 54 + ............. + 52007 ) - ( 5 + 52 + 53 + ....... + 52006 )
\(\Rightarrow\)5S - S = 52 + 53 + 54 + ............. + 52007 - 5 - 52 - 53 - ............. - 52006
\(\Rightarrow\) 4S = 52007 - 5
\(\Rightarrow\) S = \(\dfrac{5^{2007}-5}{4}\)
b,
(x+1) + (x+2) + ............. + (x+100) = 206550
\(\Rightarrow\) ( x + x + ................ + x ) + ( 1 + 2 + ............. + 100 ) = 206550
Từ 1 đến 100 có số số hạng là:
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng các số đó là:
( 100 + 1 ) . 100 : 2 = 5050
Thay vào ta có:
100x + 5050 = 206550
100x = 206550 - 5050
100x = 201500
x = 201500 : 100
x = 2015