Giúp mình với cảm ơn nhìu!! nhìu
(3x-7)2007=(3x-7)2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn là tìm x thỏa mãn ???? Nếu chư vậy thì kia phải là dấu chia hết
\(3x+1⋮2x-1\Leftrightarrow2\left(3x+1\right)⋮2x-1\Leftrightarrow6x+2⋮2x-1\)
Có \(\frac{6x+2}{2x-1}=\frac{6x-3}{2x-1}+\frac{5}{2x+1}=2+\frac{5}{2x+1}\Rightarrow5⋮2x+1\)
Mà \(Ư\left(5\right)=1;-1;5;-5\). Từ đó bạn lập bảng ra
Từ đó suy ra được \(x\in\left\{0;-1;2;-3\right\}\)
`Answer:`
\(12x-144=0\)
\(\Leftrightarrow12x=144\)
\(\Leftrightarrow x=144:12\)
\(\Leftrightarrow x=12\)
\(5x-32:18=13\)
\(\Leftrightarrow5x-\frac{16}{9}=13\)
\(\Leftrightarrow5x=13+\frac{16}{9}\)
\(\Leftrightarrow5x=\frac{133}{9}\)
\(\Leftrightarrow x=\frac{133}{9}:5\)
\(\Leftrightarrow x=\frac{133}{45}\)
\(3x+6=15\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
ta có 3S=\(3\left(3+3^2+3^3+...+3^{2010}\right)\)
3S=\(3^2+3^3+3^4+3^5+...+3^{2011}\)
2S=3S-S=\(3^2+3^3+3^4+3^5+...+3^{2011}\)-\(-\)\(3+3^2+3^3+...+3^{2010}\)
2S=\(3^{2011}-3\)
=> 2S+3 =3x
=>\(3^{2011}-3+3=3x\)
=>x=\(3^{2010}\)
7x-x = 521:519+3 . 22 - 70=52 + 3 . 4 - 1 = 25 + 3 . 4 - 1 = 25 + 12 - 1 = 36
7x - x = 6x = 36
x= 36 : 6 = 6
(3x-7)2007 = (3x-7)2005
=> (3x-7)2007 - (3x-7)2005 = 0
=> (3x-7)2005[(3x-7)2-1] = 0
\(\Rightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2005}=0\\\left(3x-7\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=7\\3x-7=\pm1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\\dfrac{6}{3}\end{matrix}\right.\)Vậy:..........
\(\left(3x-7\right)^{2007}=\left(3x-7\right)^{2005}\)
Để \(\left(3x-7\right)^{2007}=\left(3x-7\right)^{2005}\)
thì 3x- 7= 1 hoặc 3x-7= 0
\(\left\{{}\begin{matrix}\left(3x-7\right)^{2007}=1\\\left(3x-7\right)^{2007}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-7=1\\3x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=8\\3x=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{7}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(3x-7\right)^{2005}=1\\\left(3x-7\right)^{2005}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-7=1\\3x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=8\\3x=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{7}{3}\end{matrix}\right.\)