tính nhanh :
A=\(\dfrac{2014.2018-2016.2012}{2014.2015-2015.2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2014.2018-2012.2020=\left(2016-2\right)\left(2016+2\right)-\left(2016-4\right)\left(2016+4\right)\)
\(=2016^2-2^2-2016^2+4^2=-4+16=12\)
Kick cho mk nha_________
Ta có : \(A\text{=}\dfrac{2013.2014-1}{2013.2014}\text{=}\dfrac{2013.2014}{2013.2014}-\dfrac{1}{2013.2014}\text{=}1-\dfrac{1}{2013.2014}\)
\(B\text{=}\dfrac{2014.2015-1}{2014.2015}\text{=}\dfrac{2014.2015}{2014.2015}-\dfrac{1}{2014.2015}\text{=}1-\dfrac{1}{2014.2015}\)
\(Ta\) có : \(\dfrac{1}{2013.2014}>\dfrac{1}{2014.2015}\)
\(\Rightarrow A< B\)
1/ <
2/ a) 9.4.15+20.6.6+12.65.3
=36.15+20.36+65.36
=36(15+20+65)
=36.100
=3600
tick đúng nha
\(=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)
\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2014.2015}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\\ =4\left(1-\dfrac{1}{2015}\right)\\ =4.\dfrac{2014}{2015}\\ =\dfrac{8056}{2015}\)
2014.2015-1007.30=2014.2015-2014.15=2014.(2015-15)=2014.2000=4028000
A=-2015/2015x2016
A=-1/2016
B=-2014/2014x2015
B=-1/2015
vi 2016>2015,-1/2016>-1/2015
vay A>B
b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)
Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)
Ta có: \(10^{2010}+1< 10^{2011}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)
\(\Leftrightarrow10A>10B\)
hay A>B
Mk làm luôn nhé , ko chép lại đề đâu
A = \(\dfrac{\left(2016-2\right)\left(2016+2\right)-\left(2014+2\right)\left(2014-2\right)}{2015\left(2014-2013\right)}\)
A = \(\dfrac{2016^2-4-2014^2+4}{2015}=\dfrac{\left(2016-2014\right)\left(2016+2014\right)}{2015}\)
A = \(\dfrac{2\left(4030\right)}{2015}=\dfrac{8060}{2015}=4\)