K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

ta có : \(y=\dfrac{3}{x}+\dfrac{12}{1-2x}=\left(\dfrac{3}{x}-6\right)+\left(\dfrac{12}{1-2x}-12\right)+18\)

\(y=\dfrac{3-6x}{x}+\dfrac{24x}{1-2x}+18=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\)

\(0< x< \dfrac{1}{2}\) \(\Rightarrow\dfrac{3\left(1-2x\right)}{x}>0\)\(\dfrac{24x}{1-2x}>0\)

áp dụng bất đẳng thức AM - GM cho 2 số : \(\dfrac{3\left(1-2x\right)}{x}>0\)\(\dfrac{24x}{1-2x}>0\)

ta có : \(\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}\ge2\sqrt{\dfrac{3\left(1-2x\right)}{x}.\dfrac{24x}{1-2x}}=12\sqrt{2}\)

\(\Rightarrow\) \(y=\dfrac{3\left(1-2x\right)}{x}+\dfrac{24x}{1-2x}+18\ge18+12\sqrt{2}\)

\(\Rightarrow\) giá trị nhỏ nhất của \(y\)\(18+12\sqrt{2}\)

dấu " = " xảy ra khi và chỉ khi \(\dfrac{3\left(1-2x\right)}{x}=\dfrac{24x}{1-2x}\)

\(\Leftrightarrow3\left(1-2x\right)^2=24x^2\) \(\Leftrightarrow3\left(1-4x+4x^2\right)=24x^2\)

\(\Leftrightarrow3-12x+12x^2=24x^2\Leftrightarrow12x^2+12x-3=0\)

\(\Delta'=\left(6\right)^2-12.\left(-3\right)=36+36=72>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x=\dfrac{-6+\sqrt{72}}{12}=\dfrac{-1+\sqrt{2}}{2}\) ; \(x=\dfrac{-6-\sqrt{72}}{12}=\dfrac{-1-\sqrt{2}}{2}\)

vậy giá trị nhỏ nhất của \(y\)\(18+12\sqrt{2}\)

và dấy " = " xảy ra khi và chỉ khi \(x=\dfrac{-1\pm\sqrt{2}}{2}\)

17 tháng 5 2017

\(y=\dfrac{4\left(x+1-1\right)}{x}+\dfrac{9\left(x+1-x\right)}{1-x}\)

\(=4+9+\dfrac{4\left(1-x\right)}{x}+9\dfrac{x}{1-x}\ge13+2\sqrt{4\dfrac{\left(1-x\right)}{x}.9\dfrac{x}{1-x}}=25\)

\(\Rightarrow y\ge25,\forall x\in\left(0;1\right)\)

Đẳng thức \(y=25\) xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}\dfrac{4\left(1-x\right)}{x}=\dfrac{9x}{1-x}=6\\x\in\left(0;1\right)\end{matrix}\right.\)

Hay \(x=\dfrac{2}{5}\)

Vậy giá trị nhỏ nhất của hàm số đã cho bằng 25 đặt tại \(x=\dfrac{2}{5}\)

31 tháng 1 2018

Đoạn đầu bạn đã biến đổi nhầm một chút nhé:

\(y=\dfrac{4}{x}+\dfrac{9}{1-x}=\dfrac{4\left(x+1-x\right)}{x}+\dfrac{9\left(1-x+x\right)}{1-x}=4+9+4.\dfrac{1-x}{x}+9.\dfrac{x}{1-x}\)

1 tháng 9 2021

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

NV
7 tháng 1 2021

a.

\(y=\dfrac{4}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(y_{min}=8\) khi \(x=\dfrac{4}{5}\)

b.

\(y=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(y_{min}=4\) khi \(x=\dfrac{1}{2}\)

12 tháng 5 2021

Ta có: \(y-\frac{29}{3}=2x^2+\frac{5}{x+1}-\frac{29}{3}\)

\(=\frac{6x^2\left(x+1\right)+15-29\left(x+1\right)}{3\left(x+1\right)}\)

\(=\frac{6x^3+6x^2+15-29x-29}{3\left(x+1\right)}\)

\(=\frac{6x^3+6x^2-29x-14}{3\left(x+1\right)}\)

\(=\frac{\left(6x^3-12x^2\right)+\left(18x^2-36x\right)+\left(7x-14\right)}{3\left(x+1\right)}\)

\(=\frac{\left(x-2\right)\left(6x^2+18x+7\right)}{3\left(x+1\right)}\ge0\left(\forall x\right)\) vì \(x+1\ge3>0\)

\(\Rightarrow y\ge\frac{29}{3}\)

Dấu "=" xảy ra khi: \(x=2\)

Vậy \(min_y=\frac{29}{3}\Leftrightarrow x=2\)

14 tháng 3 2021

Ta có \(f\left(x\right)-6=\dfrac{2x^3+4-6x}{x}=\dfrac{2\left(x-1\right)^2\left(x+2\right)}{x}\ge0\) nên \(f\left(x\right)\ge6\).

Đẳng thức xảy ra khi và chỉ khi x = 1.

14 tháng 3 2021

Cách khác thì dùng AM - GM:

\(f\left(x\right)=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{2x^2.\dfrac{2}{x}.\dfrac{2}{x}}=6\).

Xảy ra đẳng thức khi x = 1.

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky với $x>0; 1-x> 0$ ta có:

\(\left(\frac{2}{1-x}+\frac{1}{x}\right)[(1-x)+x]\geq (\sqrt{2}+1)^2\)

\(\Rightarrow \frac{2}{1-x}+\frac{1}{x}\geq \frac{(\sqrt{2}+1)^2}{1-x+x}=(\sqrt{2}+1)^2\)

Vậy \(y_{\min}=(\sqrt{2}+1)^2\)

Dấu bằng xảy ra khi \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\Rightarrow x=\sqrt{2}-1\)