K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

giả sử 2n+1/6n+1 là phân số chưa tối giản thì 2n+1 và 6n+1 còn chia hết cho d (d khác 1)

=>(2n+1)-(6n+1) chia hết cho d

6n+3-6n-1 chia hết cho d

2 chia hết cho d

=>d thuộc Ư(2)=1;2

mà 2n+1 là số lẻ nên ko có ước 2

=>d=1

mà d khác 1 nên ko có trường hợp trên

=>phân số 2n+1/6n+1 chưa tối giản

25 tháng 2 2023

Gọi ƯCLN của 6n+7 và 2n+1 là : a

\(\Rightarrow6n+7⋮a\) và \(2n+1⋮a\)

\(\Rightarrow3\left(2n+1\right)⋮a\)

\(\Rightarrow(6n+7-6n-3)⋮a\)

\(\Rightarrow4⋮a\)

\(\Rightarrow a\inƯ\left(4\right)\in\left(1;-1;2;-2;4;-4\right)\)

mà \(2n+1\) là số lẻ nên không có ước là : (2;-2;4;-4)

\(\Rightarrow a\in\left(1;-1\right)\)

\(\Rightarrow A\) tối giản

 

1 tháng 6 2021

các bạn giúp mình với

1 tháng 6 2021

HGYTTYYRDTETDUYYU44RT8IP9Y635T6Y7U8IOP[]34567890SDFGHJKDFGHJKCVBNM, BN

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$

$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$

$\Rightarrow 2n+7-2(n+3)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.

b.

Gọi $d$ là ƯCLN $(4n+6, 6n+7)$

$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$

$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$

Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.

$\Rightarrow d=1$

$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

22 tháng 2 2016

Gọi ước chung lớn nhất (4n+1;6n+1)=d

->4n+1 chia hết cho d; 6n+1 chia hết cho d

Vì 4n+1 chia hết cho d

->3(4n+1) chia hết cho d

->12n+3 chia hết cho d

Vì 6n+1 chia hết cho d

->2(6n+1) chia hết cho d

->12n+2 chia hết cho d

Xét hiệu:12n+3-(12n+2) chia hết cho d

             12n+3-12n-2 chia hết cho d

                       1 chia hết cho d

->d thuộc Ư(1)

Ư(1)={1;-1}

-> ước chung lớn nhất(4n+1;6n+1)={1;-1}

Vậy với mọi n thuộc N, phân số 4n+1/6n+1 là phân số tối giản.

(VÌ PHẤN SỐ TỐI GIẢN LUÔN CÓ ƯỚC CHUNG LỚN NHẤT LÀ 1 VÀ -1 BẠN Ạ)

2 tháng 8 2018

Đặt d là ước chung lớn nhất của 2n+1 và 6n+5

Ta có \(2n+1⋮d\Rightarrow3.\left(2n+1\right)⋮d\Rightarrow6n+3\)

Mặt khác \(6n+5⋮d\)

Do đó \(6n+5-6n-3⋮d\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)

Mặt khác 6n+5 là số lẻ nên d = 1

Khi đó 6n + 5 và 2n +1 là hai số nguyên tố cùng nhau hay phân số A tối giản

2 tháng 8 2018

Thử vài trường hợp là ra ngay !!!