Cho 2 số dương x,y.Tìm giá trị nhỏ nhất của biểu thức sau: \(P=\frac{x^2+12}{x+y}+y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)
\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :
\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)
\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :
\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)
\(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)
\(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
Tương tự , chứng minh đc :
\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)
\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)
\(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)
\(\ge1\)
Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1
\(A=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\ge\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}\ge2\sqrt{\frac{\sqrt{2x}}{\sqrt{y}}.\frac{\sqrt{2y}}{\sqrt{x}}}=2\sqrt{2}\) (Cô si 2 lần)
Vậy min A = \(2\sqrt{2}\). Dấu bằng "=" ra khi và chỉ khi x=y= -1 hoặc x=y=1
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Áp dụng bđt AM-GM ta được:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)
Cộng từng vế các bất đẳng thức trên ta được
\(A+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Cách 2:Dù dài hơn Lê Tài Bảo Châu
\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)
\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)
Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )
Cách 3:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
\(P=\frac{x^2+2xy+y^2+12-xy}{x+y}=x+y+\frac{12}{x+y}-\frac{xy}{x+y}\)
áp dụng bất đẳng thức cosy ta có:
xy\(\le\)(x+y)^2/4
=> \(P\ge\left(x+y\right)-\frac{x+y}{4}+\frac{12}{x+y}\)
=>\(P\ge\frac{3\left(x+y\right)}{4}+\frac{12}{x+y}\)
sử dụng cosy thêm lần nữa
được P>=6