6x^2+5y^2=74(x,y thuộc z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6x^2+5y^2=74\)
<=>\(5y^2=74-6x^2\)
Vì \(5y^2\ge0=>74-6x^2\ge0\)
=>\(6x^2\le74<=>x^2\le12,3\)
mà \(x^2\) là số chính phương nên
=>\(x^2\in\left\{0;1;4;9\right\}\)
=>x={0;1;-1;-2;2;3;-3}
=>y=....
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
bạn vào link tham khảo
Câu hỏi của titanic - Toán lớp 7 - Học toán với OnlineMath
\(x^2-4xy+5y^2=169\)
\(x^2-4xy+4y^2+y^2-169=0\)
\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)
\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)
b/ \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)
\(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)
\(\Rightarrow y^2\le13^2\)và \(13^2-y^2\)là số chính phương . Do đó :
\(y^2=0\)hay \(y=0\)
Thay vào ta có các nghiệm sau \(\left(13,0\right);\left(-13;0\right)\)
ta thấy 5y2 có tận cùng = 0 hoặc 5
nên 6x2 = 74 - 5y2
\(\Rightarrow\) 6x2 có tận cùng = 4 hoặc 9
ta lại có 6x2 có tận cùng = 4 \(\Rightarrow\)5y2 có tận cùng bằng 0
xét 5y2=20\(\Rightarrow\)y2=4\(\Rightarrow\)y= 2 hoặc -2
6x2= 74-20=54\(\Rightarrow\)x2= 9\(\Rightarrow\)x= 3 hoặc -3
vậy các số nguyên x, y thỏa mãn là x=(3;-3) y=(2;-2)
6x^2 - 5y^2 = 74
<=> 6(x^2 - 4) = 5(10 - y^2)
--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1
--> x^2 - 4 chia hết cho 5
Đặt x^2 = 5k + 4 (k tự nhiên)
--> y^2 = 10 - 6k
Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3
--> k = 0 hoặc k = 1
TH1: k = 0 --> y = sqrt(10) (loại)
TH2: k = 1
--> (x; y) = (-3; -2); (3; 2) (thỏa)
6x^2 +5y^2 =74
(1) 6x2≥0 ⇒ 5y2≤74 ⇔
y2≤745<15 ⇔ y2≤14
⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}
(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn
(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3
=> y không chia hết cho 3
từ (1) (2) và (3) => y=±2y=±2
⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3
(x;y)=(±3;±2)
a) Ta có:
\(6x^2+5y^2=74\)
\(\Rightarrow6\left(x^2-4\right)=5\left(10-y^2\right)\) (1)
Từ (1) \(\Rightarrow6\left(x^2-4\right)⋮5\) và (5,6)=1
\(\Rightarrow x^2-4⋮5\Rightarrow x^2=5k+4\left(k\in N\right)\)
Thay \(x^2-4=5k\) vào (1) ta có:
\(\Rightarrow y^2=10-6k\)
Vì\(\left\{{}\begin{matrix}x^2>0\\y^2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5k+4>0\\10k-4>0\end{matrix}\right.\)
\(\Rightarrow-\dfrac{4}{5}< k< \dfrac{5}{3}\Rightarrow\left[{}\begin{matrix}k=0\\k=1\end{matrix}\right.\)
(+) Nếu k = 0 \(\Rightarrow y^2=10\) (loại)
(+) Nếu k = 1 \(\Rightarrow\left\{{}\begin{matrix}x^2=9\\y^2=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm3\\y=\pm4\end{matrix}\right.\)
Vậy (x,y) \(\in\left\{\left(3,2\right);\left(-3,-2\right)\right\}\)