Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
h.
n3+ 3n2 -n - 3
= n( n2 -1) + 3( n2 - 1)
= ( n +3)( n2 - 1)
= ( n +3)( n -1)( n +1)
Do n là số nguyên lẻ. Đặt : 2k + 1 = n . Ta có :
( 2k+ 4)2k( 2k +2)
= 2( k + 2)2k . 2( k+ 1)
= 8k( k +1)( k +2)
Do : k ; k+1; k+2 là 3 STN liên tiếp
--> k( k +1).(k+ 2) chia hết cho 6
-->8k( k +1).(k+ 2) chia hết cho 48 với mọi n là số nguyên lẻ
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
bài này có lấn sang 7 hàng đẳng thức lớp 8 :))
\(m.n.\left(m^2-1-n^2+1\right)\)
\(=m.n.\left[\left(m-1\right).\left(m+1\right)-\left(n-1\right).\left(n+1\right)\right]\)
\(=m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)\)
vì m,m-1,m+1 và n,n-1,n+1 là tích của 3 số liên tiếp => \(m.n.\left(m-1\right).\left(m+1\right)⋮3,m.n.\left(n-1\right).\left(n+1\right)⋮3\)
=> \(m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)⋮3\)
hay \(m.n.\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
\(m^2-\sqrt{3}m-\sqrt{2}m+\sqrt{6}=\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\)
Bảng xét dấu:
m | \(\sqrt{2}\) | \(\sqrt{3}\) | |||
\(m-\sqrt{3}\) | - | | | - | 0 | + |
\(m-\sqrt{2}\) | - | 0 | + | | | + |
\(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) | + | 0 | - | 0 | + |
Với \(m< \sqrt{2}\) và \(\sqrt{3}< m\) thì \(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) > 0 => Hàm số đồng biến
Với \(\sqrt{2}< x< \sqrt{3}\) thì \(\left(m-\sqrt{3}\right)\left(m-\sqrt{2}\right)\) < 0 => Hàm số nghịch biến