Có A=x2−x−6x−2 Chứng minh ∀x∈Z(x≠2)thì A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$
$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$
Ta có đpcm.
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
\(A=\dfrac{x^3-4x^2+4x+3x^2-12x+12}{x^2-4x+4}\)
\(=\dfrac{x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)}{x^2-4x+4}\)
\(=\dfrac{\left(x+3\right)\left(x^2-4x+4\right)}{x^2-4x+4}=x+3\)
\(\Rightarrow A\in Z\)
Ta có: \(A=\frac{x^2-x-6}{x-2}\)(ĐKXĐ: \(x\ne2\))
\(\Rightarrow A=\frac{x^2-3x+2x-6}{x-2}\)
\(\Rightarrow A=\frac{\left(x-2\right)\left(x+3\right)}{x-2}\)
\(\Rightarrow A=x+3\)
Mà \(x\in Z\)
=> A là số nguyên