K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2023

a) \(3.5^2+15.2^2-26\div2\)

= 3.25 + 15.4 - 13

= 75 + 60 - 13

= 135 - 13

= 122

b) \(5^3.2-100\div4+2^3.5\)

= 125.2 - 25 + 8.5

= 250 - 25 + 40

= 225 + 40

= 265

c)\(6^2\div9+50.2-3^3.33\)

= 36 : 9 + 100 - 9.33

= 4 + 100 - 297

= 104 - 297

= -193

d)\(3^2.5+2^3.10-81\div3\)

= 9.5 + 8.10 - 27

= 45 + 80 - 27

= 125 - 27

= 98

e) \(5^{13}\div5^{10}-25.2^2\)

= 53 - 25.4

= 125 - 100

= 25

f) \(20\div2^2+5^9\div5^8\)

= 20 : 4 + 5

= 5 + 5

= 10

4 tháng 10 2022

siuu

12 tháng 8 2023

 a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)

b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)

c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)

\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)

\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)

Tương tự câu d,e,f bạn tự làm nhé

4 tháng 4 2022

300

10 tháng 10 2023

a) \(S=1+2+2^2+..+2^{2022}\)

\(2S=2+2^2+2^3+...+2^{2023}\)

\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)

\(S=2^{2023}-1\)

b) \(S=3+3^2+3^3+...+3^{2022}\)

\(3S=3^2+3^3+...+3^{2023}\)

\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)

\(2S=3^{2023}-3\)

\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)

c) \(S=4+4^2+4^3+...+4^{2022}\)

\(4S=4^2+4^3+...+4^{2023}\)

\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)

\(3S=4^{2023}-4\)

\(S=\dfrac{4^{2023}-4}{3}\)

d) \(S=5+5^2+...+5^{2022}\)

\(5S=5^2+5^3+...+5^{2023}\)

\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)

\(4S=5^{2023}-5\)

\(S=\dfrac{5^{2023}-5}{4}\)

10 tháng 10 2023

thanks

 

50) \(\sqrt{98-16\sqrt{3}}=4\sqrt{6}-\sqrt{2}\)

51) \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\)

52) \(\sqrt{4+\sqrt{15}}=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)

53) \(\sqrt{5-\sqrt{21}}=\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{6}}{2}\)

54) \(\sqrt{6-\sqrt{35}}=\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{10}}{2}\)

55) \(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

56) \(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

21 tháng 1 2023

Can bac 8

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee