K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

x = 2

Giải bằng máy tính cầm tay !!!!

6 tháng 12 2017

\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\) với \(1\le x\le3\)

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(2\sqrt{x-1}+\sqrt{12-4x}\right)^2\le\left(1^2+1^2\right)\left(4x-4+12-4x\right)\)

= 16

Dấu "=" xảy ra <=> 2\(\sqrt{x-1}\)=\(12-4x\) <=> x=2 ( Thỏa mãn ĐKXĐ )

=> 2\(\sqrt{x-1}+\sqrt{12-4x}\) \(\le4\)

\(2\sqrt{x-1}+\sqrt{12-4x}\ge4\)

Do đó : 2\(\sqrt{x-1}+\sqrt{12-4x}\) =4

<=> x=2

Vậy nghiệm của phương trình là x=2

11 tháng 11 2019

Dễ thôi bạn đặt căn lập x+4=a; căn lập x=b =>a khác b

=> a^3=x+4; b^3=x

=> a^3-b^3=4

=> (a^3-b^3)/4=1

từ pt ta có a-b=1

<=> 4(a-b)=a^3-b^3

<=> (a^2+ab+b^2-4)(a-b)=0

Do a khác b => a^2+ab+b^2=4

Thay 4= a^3-b^3

=> a^2+ab+b^2=a^3-b^3

=> tìm đc a-b-1=0

=> a=b+1

xong thay vào hệ pt x+4=a^3; x=b^3 thôi sẽ tìm đc a,b => Tìm đc x

7 tháng 10 2018

đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)

<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)

<=> ..bla bla tự làm nhá !

7 tháng 10 2018

Thanks bạn nhiều nhiều lắm nha

27 tháng 10 2019

Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có

\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương

\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)

\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)

Dấu "=" xảy ra khi  6iS2fUS.gif Giải hệ phương trình trên ta được 5vTcgmx.gif

27 tháng 10 2019

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\)   giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)

Thế nào nó bị lỗi nên không hiển thị

7 tháng 8 2021

Ai giúp e vs ạ

13 tháng 8 2021

có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\) 

\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si

\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)

dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)

13 tháng 8 2021

chết mình ghi thiếu ^2 ở y và z :v hjhj

NV
2 tháng 2 2024

Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)

Pt 2 tương đương:

\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)

\(\Leftrightarrow4xy^2z^4=4\)

\(\Leftrightarrow xy^2z^4=1\) (1)

Quay lại pt đầu, áp dụng AM-GM:

\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)

\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)

\(\Leftrightarrow x^2y^4z^8\le1\)

\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)

2 tháng 2 2024

Anh ơi! Điều kiện x>0 là như nào ạ anh. 

a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)

Để P nguyên dương thì x-1 thuộc {1;4;2}

=>x thuộc {2;5;3}

b: x+y+z=0

=>x=-y-z; y=-x-z; z=-x-y

\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)

\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)

\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)

\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)

\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)