Tìm Min
A=\(\dfrac{4x^2-2x+1}{x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
\(N=\dfrac{57x^2+38x+95}{19\left(4x^2+4x+1\right)}=\dfrac{14\left(4x^2+4x+1\right)+\left(x^2-18x+81\right)}{19\left(4x^2+4x+1\right)}=\dfrac{14}{19}+\left(\dfrac{x-9}{2x+1}\right)^2\ge\dfrac{14}{19}\)
\(N_{min}=\dfrac{14}{19}\) khi \(x=9\)
a)
\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)
\(A\ge\dfrac{3}{2}\) khi x =4
a) Rút gọn
\(E=\left(\dfrac{2}{1+2x}+\dfrac{4x^2}{4x^2-1}+\dfrac{1}{2x-1}\right):\left(\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)\)
\(E=\left[\dfrac{2\left(2x-1\right)}{\left(1+2x\right)\left(2x-1\right)}+\dfrac{4x^2}{\left(1+2x\right)\left(2x-1\right)}+\dfrac{1+2x}{\left(1+2x\right)\left(2x-1\right)}\right]:\left(\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2x-1}{\left(2x-1\right)\left(2x+1\right)}\right)\)
\(E=\left(\dfrac{4x-2+4x^2+1+2x}{\left(1+2x\right)\left(2x-1\right)}\right):\left(\dfrac{2x+1-2x+1}{\left(2x-1\right)\left(2x+1\right)}\right)\)
\(E=\left(\dfrac{4x^2+6x-1}{\left(1+2x\right)\left(2x-1\right)}\right).\left(\dfrac{\left(2x-1\right)\left(2x+1\right)}{2}\right)\)
\(E=\dfrac{4x^2+6x-1}{2}\)
Lời giải:
\(A=\frac{4}{1-x}+\frac{1}{x^2(1-x)}\)
Áp dụng BĐT Cô-si:
$\frac{4}{1-x}+16(1-x)\geq 2\sqrt{4.16}=16$
$\frac{1}{x^2(1-x)}+16x+16x+16(1-x)\geq 4\sqrt[4]{16.16.16}=32$
Cộng theo vế 2 BĐT trên và thu gọn:
$A+32\geq 16+32$
$\Leftrightarrow A\geq 16$
Vậy $A_{\min}=16$ khi $x=\frac{1}{2}$
\(P=\left(\dfrac{x}{2}+\dfrac{9}{2x}\right)+\left(\dfrac{y}{8}+\dfrac{2}{y}\right)+\left(\dfrac{z}{4}+\dfrac{9}{z}\right)+\dfrac{1}{8}\left(4x+7z+6z\right)\)
\(P\ge2\sqrt{\dfrac{9x}{4x}}+2\sqrt{\dfrac{2y}{8y}}+2\sqrt{\dfrac{9z}{4z}}+\dfrac{1}{8}.76=\dfrac{33}{2}\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(3;4;6\right)\)
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)
\(A=4-\dfrac{2}{x}+\dfrac{1}{x^2}=\left(\dfrac{1}{x^2}-2\dfrac{1}{x}.1+1\right)+3=\left(\dfrac{1}{x}-1\right)^2+3\ge3\)
Min A là 3 khi x là 1