tìm GTLN hoặc nhỏ nhất của:
B = (2x + 1/3)^4 - 1
D = -(4/9x - 2/15)^6 + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với mọi x ta có :
\(\left|x-4\right|\ge0\)
\(\Leftrightarrow-\left|x-4\right|\le0\)
\(\Leftrightarrow0,5-\left|x-4\right|\le0,5\)
Dấu "=" xảy ra khi :
\(\left|x-4\right|=0\)
\(\Leftrightarrow x=4\)
Vậy \(C_{Max}=0,5\Leftrightarrow x=4\)
d, Với mọi x ta có :
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\)
\(\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)
\(\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)+3\le3\)
\(\Leftrightarrow D\le3\)
Dấu "=" xảy ra khi :
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6=0\)
\(\Leftrightarrow\dfrac{4}{9}x-\dfrac{2}{15}=0\)
\(\Leftrightarrow x=\dfrac{3}{10}\)
Vậy \(D_{Max}=3\Leftrightarrow x=\dfrac{3}{10}\)
a, Với mọi x ta có :
\(\left|4,3-x\right|\ge0\)
\(\Leftrightarrow\left|4,3-x\right|+3,7\ge3,7\)
\(\Leftrightarrow A\ge3,7\)
Dấu "=" xảy ra khi :
\(\left|4,3-x\right|=0\)
\(\Leftrightarrow x=4,3\)
Vậy \(A_{Min}=3,7\Leftrightarrow x=4,3\)
b/ Với mọi x ta có :
\(\left(2x+\dfrac{1}{3}\right)^4\ge0\)
\(\Leftrightarrow\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
\(\Leftrightarrow B\ge-1\)
Dấu "=" xảy ra khi :
\(\left(2x+\dfrac{1}{3}\right)^4=0\)
\(\Leftrightarrow2x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy \(B_{Min}=-1\Leftrightarrow x=-\dfrac{1}{6}\)
\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\\ Max\Leftrightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Leftrightarrow x=\dfrac{3}{10}\)
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
B có GTNN là -1
<=> 2x+1/3=0
<=> 2x=-1/3
<=> x=-1/6
D có GTLN là 3
<=> 4/9x-2/15=0
<=> 4/9x=2/15
<=> x=3/10