Chứng tỏ ( n + 3 ) . ( n + 6 ) chia hết cho hai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trong n*(n+1) luôn luôn có 1 số chẵn ,1 số lẻ nên chia hết cho 2
Bài giải
a, Ta có : \(n\left(n+1\right)\) là tích của hai số nguyên liên tiếp \(\Rightarrow\) một trong hai số là số chẵn
\(\Rightarrow\text{ }n\left(n+1\right)\text{ }⋮\text{ }2\)
b, \(\left(n+3\right)\left(n+6\right)\)
Ta xét hai trường hợp :
TH1 : n lẻ \(\Rightarrow\) n + 3 chẵn , n + 6 lẻ
TH2 : n chẵn \(\Rightarrow\) n + 3 lẻ , x n + 6 chẵn
\(\Rightarrow\text{ }\left(n+3\right)\left(n+6\right)\text{ }⋮\text{ }2\)

Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n

Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a