K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

a: AM=9cm

AH=7,2cm

14 tháng 7 2023

A B M N H

1/

Xét (O) có

\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) 

\(\Rightarrow AM\perp BM\) => AM là tiếp tuyến với (B) bán kính BM

Ta có

\(AB\perp MN\Rightarrow MH=NH\) (trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung tại điểm giao cắt)

=> AB vừa là đường cao vừa là đường trung tuyến của tg BMN

=> tg BMN cân tại B (Trong tg đường cao xp từ 1 đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân tại đỉnh đó)

=> BM=BN (cạnh bên tg cân) => \(N\in\left(B\right)\) => BN là đường kính của (B)

Xét (O) có

\(\widehat{ANB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AN\perp BN\)

=> AN là tiếp tuyến của (B)

2/

Ta có

\(MN=MH+NH\)

\(\Rightarrow MN^2=MH^2+NH^2+2.MH.NH\) (1)

Xét tg vuông AMB có

\(MH^2=AH.HB\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

\(\Rightarrow MH=\sqrt{AH.HB}\) (3)

Xét tg vuông ANB có

\(NH^2=AH.HB\) (lý do như trên) (4)

\(\Rightarrow NH=\sqrt{AH.HB}\) (5)

Từ (3) và (5) \(\Rightarrow MH.NH=\sqrt{AH.HB}.\sqrt{AH.HB}=AH.HB\) (6)

Thay (2) (4) (6) vào (1)

\(\Rightarrow MN^2=AH.HB+AH.HB+2.AH.HB=4.AH.HB\)

 

 

BP//KM

=>PK=BM

=>PK=AN

mà PK//AN

nên ANKP là hình bình hành

goc ACB=góc AMB=1/2*180=90 độ

=>AM vuông góc BE, BC vuông góc AE
góc ECH+góc EMH=180 độ

=>ECHM nội tiếp

Xet ΔEAB có

AM,BC là đường cao

AM căt BC tại H

=>H là trực tâm

=>EH vuông góc AB