1.Tìm n thuộc N : 3n+2+3n = 270
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n-11⋮n-2\)
\(\Rightarrow3n-6-5⋮n-2\)
\(\Rightarrow3\left(n-2\right)-5⋮n-2\)
\(3\left(n-2\right)⋮n-2\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\in U\left(5\right)\)
...
\(3n-11⋮n-2\)
\(\Rightarrow3\left(n-2\right)-5⋮n-2\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\in\left\{5;1;-1;-5\right\}\)
\(\Rightarrow n\in\left\{7;3;1;-3\right\}\)
câu b chưa bt.để suy nghĩ thêm:))
\(\frac{3n+4}{3n-1}=1+\frac{5}{3n-1}\)
Để 3n+4 chia hết cho 3n-1 thì 5 chia hết cho 3n-1 hay \(3n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng:
3n-1 | -5 | -1 | 1 | 5 |
3n | -4 | 0 | 2 | 6 |
n | -4/3 | 0 | 2/3 | 2 |
Vì n thuộc N nên n=0;2
a: \(\Leftrightarrow n^3-2n^2+2n^2-4n+3n-6+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
a) 3n+2 chia hết n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc {0;2;-4;6}
b) 3n+24 chia hết n-4
=>3n-12+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 thuộc Ư(36)={-1;1;-2;2;-3;3;-4;4;-6;6;-9;9;-12;12;-18;18;-36;36}
=>n thuộc{3;5;2;6;1;7;0;8;-2;10;-5;13;-8;16;-14;22;-32;40}
a)3n+2 chia hết cho n-1
=>3.(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5}
=>n E {-4;0;2;6}
b)3n+24 chia hết cho n-4
=>3.(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E Ư(36)={-36;-18;-12;-9;-6;-4;-3;-2;-1;1;2;3;4;6;9;12;18;36}
=>n E {..} (bn tự liệt kê nhé)
vậy...
a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\) mà n - 2 < n + 3 => n - 2 < 0 => n < 2
Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.
b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1
=> 3 (n + 7) chia hết cho 3n - 1
=> 3n + 21 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 ∈ Ư(22)
=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }
- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)
- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)
- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)
- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)
- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)
Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\) là số nguyên.
c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5
=> 4 (3n + 2) chia hết cho 4n - 5
=> 12n + 8 chia hết cho 4n - 5
=> 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)
Để C nguyên thì 3n-2+3 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;3;-3\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{1\right\}\)
\(3^{n+2}+3^n=270\)
\(\Leftrightarrow3^n.9+3^n=3^3.3^2+3^3\)
\(\Leftrightarrow n=3\)
P/s:Kết quả đúng đó,cách làm chưa chắc chắn.Bạn xem lại nhé!
\(3^{n+2}+3^n=3^n.3^2+3^n=3^n\left(3^2+1\right)=3^n.10=270\Leftrightarrow3^n=27\Leftrightarrow n=3\)