3x^2-6xy+3y^2-12z^2 phân tích nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2-6xy+3y2-12z2
=3x2-3.2xy+3y2-3.4z2
=3(y2-2xy+y2-4z2)
=3(2y2-2xy-4z2)
\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(\left(x-y\right)^2-\left(2z\right)^2\right)=3\left(x-y-2z\right)\left(x-y+2z\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-4z^2\right]\)
\(=3.\left(x-y-2z\right).\left(x-y+2z\right)\)
a) \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
b) \(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)
k) = x( 2x - 1 ) - 3y( 2x - 1 ) = ( 2x - 1 )( x - 3y )
l) = x( x - y ) + 5( x - y ) = ( x - y )( x + 5 )
m) = ( a2 - 4a + 4 )( a2 + 4a + 4 ) = ( a - 2 )2( a + 2 )2
n) = y2( x2 - 1 ) - ( x2 - 1 ) = ( x - 1 )( x + 1 )( y - 1 )( y + 1 )
q) = 3[ ( x - y )2 - 4z2 ] = 3( x - y - 2z )( x - y + 2z )
a, x^2-9+(x-3)^2 = (x-3)(x+3)+(x-3)^2=(x-3)(x+3+x-3)=2x(x-3)
b,có sai k ạ ! vì mình thấy tự nhiên có ẩn y ở đó , nếu đề bài 2 ẩn thì 1 trong 3 hạng tử chứa ẩn x kia phải có thêm 1 ẩn y
c,đề bài thiếu ẩn ở hạng tử thứ nhất ạ !
d) \(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(4xy^2-12x^2y+8xy\)
\(=4xy\left(y-3x+2\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)
\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
\(a,4x^4-8x^3+4x^2\)
\(=4x^2\cdot\left(x^2-2x+1\right)\)
\(=4x^2\cdot\left(x-1\right)^2\)
\(b,x^2-y^2+5\cdot\left(y-x\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x+y-5\right)\)
\(c,3x^2-6xy+3y^2-12z^2\)
\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)
\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)
3x2 - 6xy + 3y2 - 12z2
= 3(x2 - 2xy + y2 - 4z2)
= 3[(x - y)2 - (2z)2]
= 3(x - y - 2z)(x - y + 2z)