Tinh:
\(\left(\dfrac{9}{16}\right)^{2016}.\left(\dfrac{16}{9}\right)^{2015}.\dfrac{4}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
a/ \(2016\dfrac{1}{6}:\dfrac{-2}{5}-16\dfrac{1}{6}:\dfrac{-2}{5}\)
\(=2016\dfrac{1}{6}.\dfrac{-5}{2}-16\dfrac{1}{6}.\dfrac{-5}{2}\)
\(=\dfrac{-5}{2}\left(2016\dfrac{1}{6}-16\dfrac{1}{6}\right)\)
\(=\dfrac{-5}{2}.2000\)
\(=-5000\)
b/ \(\left(\dfrac{4}{3}-\dfrac{3}{2}\right)^2-2.\left|-\dfrac{1}{9}\right|+\sqrt{\dfrac{4}{81}}\)
\(=\left(\dfrac{8}{6}-\dfrac{9}{6}\right)^2-2.\dfrac{1}{9}+\dfrac{2}{9}\)
\(=\dfrac{1}{4}-\dfrac{2}{9}+\dfrac{2}{9}\)
\(=\dfrac{1}{36}+\dfrac{2}{9}\)
\(=\dfrac{1}{4}\)
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
\(\dfrac{8^2.6^3}{9^2.16^2}=\dfrac{\left(2^3\right)^2.2^3.3^3}{\left(3^2\right)^2.\left(2^4\right)^2}=\dfrac{2^{3.2+3}.3^3}{3^4.2^8}=\dfrac{3^3.2^8.2}{3.3^3.2^8}=\dfrac{2}{3}\\ ---\\ \dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}=\left(\dfrac{0,15}{0,5}\right)^4.\dfrac{1}{0,5}=\left(\dfrac{3}{10}\right)^4.2=\dfrac{81}{10000}.2=\dfrac{81}{5000}\\ ---\\ d,\left(\dfrac{3}{4}\right)^3.\left(\dfrac{16}{9}\right)^3=\left(\dfrac{3}{4}.\dfrac{16}{9}\right)^3=\left(\dfrac{48}{32}\right)^3=\left(\dfrac{3}{2}\right)^3=\dfrac{27}{8}\)
b) \(\dfrac{8^2.6^3}{9^2.16^2}=\dfrac{2^6.2^3.3^3}{3^4.2^8}=\dfrac{2^9.3^3}{3^4.2^8}=\dfrac{2}{3}\)
c) \(\dfrac{\left(0,15\right)^4}{\left(0,5\right)^5}=\dfrac{\left(0,5\right)^4.\left(0,3\right)^4}{\left(0,5\right)^5}=\dfrac{0,3^4}{0,5}\)
d) \(\left(\dfrac{3}{4}\right)^3.\left(\dfrac{16}{9}\right)^3=\dfrac{3^3}{4^3}.\dfrac{4^6}{3^6}=\dfrac{4^3}{3^3}=\left(\dfrac{4}{3}\right)^3\)
\(a,=\dfrac{9}{4}-\dfrac{9}{4}+\dfrac{5}{6}=\dfrac{5}{6}\\ b,=\dfrac{4}{9}+1=\dfrac{13}{9}\)
a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)
\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)
b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)
\(=\left[3-4\right]^2=1\)
c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)
\(=121-48=73\)
d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)
\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)
\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)
e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)
\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)
\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)
\(\dfrac{\left(\dfrac{2}{7}\right)^7.7^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\)
\(=\dfrac{\dfrac{2^7}{7^7}.7^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7.5^2+2.256}\)
\(=\dfrac{2^7+\left(\dfrac{9}{4}.\dfrac{16}{3}\right)^3}{2^7.5^2+2.2^8}=\dfrac{2^7+\left(12\right)^3}{2^7.5^2+2.2^8}\)
\(=\dfrac{2^7+\left(2^2.3\right)^3}{2^7.5^2+2^9}=\dfrac{2^7+2^6.3^3}{2^7.\left(5^2+2^2\right)}\)
\(=\dfrac{2^6\left(2+27\right)}{2^7.\left(25+4\right)}=\dfrac{29}{2.29}=\dfrac{1}{2}\)
\(\left(\dfrac{9}{16}\right)^{2016}.\left(\dfrac{16}{9}\right)^{2015}.\dfrac{4}{3}\)
=\(\dfrac{9^{2016}}{16^{2016}}.\dfrac{16^{2015}}{9^{2015}}.\dfrac{4}{3}\)
= \(\dfrac{9}{16}.\dfrac{4}{3}=\dfrac{3^2.4}{4^2.3}=\dfrac{3}{4}\)