Phân tích đa thức thành nhân tử:
a)x2+4
b)(x+2)(x+3)(x+4)(x+5)-25
c)x2+7x+6
d)x4+2008x2+2007x+2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2008x^2+2007x+2008\\ =x^4-x+2008\left(x^2+x+1\right)=x\left(x^3-1\right)+2008\left(x^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Ta có: \(x^4+2008x^2+2007x+2008\)
\(=x^4-x+2008\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Chọn D.
x 4 + 8x = x( x 3 +8)= x( x 3 + 2 3 ) = x(x + 2)( x 2 − 2x + 4)
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
Chia nhỏ ra cậu ơi :v
Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
a) \(x^2+4\)
\(=x^2+4+4x-4x\)
\(=\left(x^2+2.x.2+2^2\right)-4x\)
\(=\left(x+2\right)^2-\left(2\sqrt{x}\right)^2\)
\(=\left(x+2-2\sqrt{x}\right)\left(x+2+2\sqrt{x}\right)\)
c) \(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=\left(x^2+x\right)+\left(6x+6\right)\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
d) \(x^4+2008x^2+2007x+2008\)
\(=x^4+2008x^2+2008x-x+2008\)
\(=\left(x^4-x\right)+\left(2008x^2+2008x+2008\right)\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2008\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a)x4+4
=x4+4x2+4-4x2
=(x4+4x2+4)-4x2
=(x2+2)2-4x2
=(x2+2-2x)(x2+2+2x)
b)(x+2)(x+3)(x+4)(x+5)-24
=[(x+2)(x+5)][x+3)(x+4)]-24
=(x2+5x+2x+10)(x2+4x+3x+12)-24
=(x2+7x+10)(x2+7x+12)-24
=Đặt x2+7x+10=a ta có
a(a+2)-24
=a2+2a-24
=a2+6a-4a-24
=(a2+6a)-(4a+24)
=a(a+6)-4(a+6)
=(a+6)(a-4)
thay a=x2+7x+10
(x2+7x+10+6)(x2+7x+10-4)
=(x2+7x+16)(x2+7x+6)
=(x2+7x+16)(x2+x+6x+6)
=(x2+7x+16)[(x2+x)+(6x+6)]
=(x2+7x+16)[x(x+1)+6(x+1)]
=(x2+7x+16)(x+1)(x+6)
c)x2+7x+6
=x2+x+6x+6
=(x2+x)+(6x+6)
=x(x+1)+6(x+1)
=(x+1)(x+6)